Abnous K, Storey KB (2008) Skeletal muscle hexokinase: regulation in mammalian hibernation. Mol Cell Biochem 319(1–2):41–50. doi:10.1007/s11010-008-9875-5
Article
CAS
PubMed
Google Scholar
Bodine SC (2013) Hibernation: the search for treatments to prevent disuse-induced skeletal muscle atrophy. Exp Neurol 248:129–135. doi:10.1016/j.expneurol.2013.06.003
Article
PubMed
Google Scholar
Boonyarom O, Inui K (2006) Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Acta Physiol (Oxford, England) 188(2):77–89. doi:10.1111/j.1748-1716.2006.01613.x
Article
CAS
Google Scholar
Bricout VA, Serrurier BD, Bigard AX, Guezennec CY (1999) Effects of hindlimb suspension and androgen treatment on testosterone receptors in rat skeletal muscles. Eur J Appl Physiol Occup Physiol 79(5):443–448. doi:10.1007/s004210050535
Article
CAS
PubMed
Google Scholar
Dai J, Rabie AB (2007) VEGF: an essential mediator of both angiogenesis and endochondral ossification. J Dent Res 86(10):937–950
Article
CAS
PubMed
Google Scholar
Desplanches D, Mayet MH, Ilyina-Kakueva EI, Frutoso J, Flandrois R (1991) Structural and metabolic properties of rat muscle exposed to weightlessness aboard Cosmos 1887. Eur J Appl Physiol Occup Physiol 63(3–4):288–292
Article
CAS
PubMed
Google Scholar
Drew KL, Harris MB, LaManna JC, Smith MA, Zhu XW, Ma YL (2004) Hypoxia tolerance in mammalian heterotherms. J Exp Biol 207(Pt 18):3155–3162. doi:10.1242/jeb.01114
Article
CAS
PubMed
Google Scholar
Duscha BD, Kraus WE, Keteyian SJ, Sullivan MJ, Green HJ, Schachat FH, Pippen AM, Brawner CA, Blank JM, Annex BH (1999) Capillary density of skeletal muscle: a contributing mechanism for exercise intolerance in class II-III chronic heart failure independent of other peripheral alterations. J Am Coll Cardiol 33(7):1956–1963
Article
CAS
PubMed
Google Scholar
Egginton S, Fairney J, Bratcher J (2001) Differential effects of cold exposure on muscle fibre composition and capillary supply in hibernator and non-hibernator rodents. Exp Physiol 86(5):629–639
Article
CAS
PubMed
Google Scholar
Fell RD, Steffen JM, Musacchia XJ (1985) Effect of hypokinesia-hypodynamia on rat muscle oxidative capacity and glucose uptake. Am J Physiol 249(3 Pt 2):R308–R312
CAS
PubMed
Google Scholar
Frerichs KU, Kennedy C, Sokoloff L, Hallenbeck JM (1994) Local cerebral blood flow during hibernation, a model of natural tolerance to “cerebral ischemia”. J Cereb Blood Flow Metab 14(2):193–205. doi:10.1038/jcbfm.1994.26
Article
CAS
PubMed
Google Scholar
Gao YF, Wang J, Wang HP, Feng B, Dang K, Wang Q, Hinghofer-Szalkay HG (2012) Skeletal muscle is protected from disuse in hibernating dauria ground squirrels. Comp Biochem Physiol A Mol Integr Physiol 161(3):296–300. doi:10.1016/j.cbpa.2011.11.009
Article
CAS
PubMed
Google Scholar
Grichko VP, Heywood-Cooksey A, Kidd KR, Fitts RH (2000) Substrate profile in rat soleus muscle fibers after hindlimb unloading and fatigue. J Appl Physiol 88(2):473–478
CAS
PubMed
Google Scholar
Hampton M, Melvin RG, Andrews MT (2013) Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation. PLoS One 8(12), e85157. doi:10.1371/journal.pone.0085157
Article
PubMed Central
PubMed
Google Scholar
Ivakine EA, Cohn RD (2014) Maintaining skeletal muscle mass: lessons learned from hibernation. Exp Physiol 99(4):632–637. doi:10.1113/expphysiol.2013.074344
Article
CAS
PubMed
Google Scholar
James RS, Staples JF, Brown JC, Tessier SN, Storey KB (2013) The effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus. J Exp Biol 216(Pt 14):2587–2594. doi:10.1242/jeb.080663
Article
PubMed
Google Scholar
Kvist M, Hurme T, Kannus P, Jarvinen T, Maunu VM, Jozsa L, Jarvinen M (1995) Vascular density at the myotendinous junction of the rat gastrocnemius muscle after immobilization and remobilization. Am J Sports Med 23(3):359–364
Article
CAS
PubMed
Google Scholar
Ma YL, Zhu X, Rivera PM, Toien O, Barnes BM, LaManna JC, Smith MA, Drew KL (2005) Absence of cellular stress in brain after hypoxia induced by arousal from hibernation in Arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 289(5):R1297–R1306. doi:10.1152/ajpregu.00260.2005
Article
CAS
PubMed
Google Scholar
Maginniss LA, Milsom WK (1994) Effects of hibernation on blood oxygen transport in the golden-mantled ground squirrel. Respir Physiol 95(2):195–208
Article
CAS
PubMed
Google Scholar
Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40(2):294–309. doi:10.1016/j.molcel.2010.09.022
Article
CAS
PubMed Central
PubMed
Google Scholar
Manchester JK, Chi MM, Norris B, Ferrier B, Krasnov I, Nemeth PM, McDougal DB Jr, Lowry OH (1990) Effect of microgravity on metabolic enzymes of individual muscle fibers. FASEB J 4(1):55–63
CAS
PubMed
Google Scholar
McDonald KS, Delp MD, Fitts RH (1992) Effect of hindlimb unweighting on tissue blood flow in the rat. J Appl Physiol (1985) 72(6):2210–2218
CAS
Google Scholar
Morin P Jr, Storey KB (2005) Cloning and expression of hypoxia-inducible factor 1α from the hibernating ground squirrel, Spermophilus tridecemlineatus. Biochim Biophys Acta—Gene Struct Expr 1729(1):32–40, http://dx.doi.org/10.1016/j.bbaexp.2005.02.009
Article
CAS
Google Scholar
Muleme HM, Walpole AC, Staples JF (2006) Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences. Physiol Biochem Zool 79(3):474–483. doi:10.1086/501053
Article
CAS
PubMed
Google Scholar
Nowell MM, Choi H, Rourke BC (2011) Muscle plasticity in hibernating ground squirrels (Spermophilus lateralis) is induced by seasonal, but not low-temperature, mechanisms. J Comp Physiol B 181(1):147–164. doi:10.1007/s00360-010-0505-7
Article
CAS
PubMed
Google Scholar
Qin L, Appell HJ, Chan KM, Maffulli N (1997) Electrical stimulation prevents immobilization atrophy in skeletal muscle of rabbits. Arch Phys Med Rehabil 78(5):512–517
Article
CAS
PubMed
Google Scholar
Roy RR, Baldwin KM, Edgerton VR (1996) Response of the neuromuscular unit to spaceflight: what has been learned from the rat model. Exerc Sport Sci Rev 24:399–425
Article
CAS
PubMed
Google Scholar
Stein TP, Schluter MD, Galante AT, Soteropoulos P, Tolias PP, Grindeland RE, Moran MM, Wang TJ, Polansky M, Wade CE (2002) Energy metabolism pathways in rat muscle under conditions of simulated microgravity. J Nutr Biochem 13(8):471–478, http://dx.doi.org/10.1016/S0955-2863(02)00195-X
Article
CAS
PubMed
Google Scholar
Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL (2007) The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117(6):1616–1626. doi:10.1172/jci31581
Article
CAS
PubMed Central
PubMed
Google Scholar
Williams D, Kuipers A, Mukai C, Thirsk R (2009) Acclimation during space flight: effects on human physiology. Can Med Assoc J 180(13):1317–1323. doi:10.1503/cmaj.090628
Article
Google Scholar
Yamasaki M, Shimizu T, Katahira K, Waki H, Nagayama T, O-ishi H, Katsuda S, Miyake M, Miyamoto Y, Wago H, Okouchi T, Matsumoto S (2004) Spaceflight alters the fiber composition of the aortic nerve in the developing rat. Neuroscience 128(4):819–829, http://dx.doi.org/10.1016/j.neuroscience.2004.07.022
Article
CAS
PubMed
Google Scholar
Yu H, Zhu M, Qin Y, Zhong Y, Yan H, Wang Q, Bian H, Li Z (2012) Analysis of glycan-related genes expression and glycan profiles in mice with liver fibrosis. J Proteome Res 11(11):5277–5285. doi:10.1021/pr300484j
Article
CAS
PubMed
Google Scholar