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Abstract

Background: A central aim in ecological research is to improve understanding of the interactions between species and
their environments; these improvements will prove crucial in predicting the ecological consequences of climate change
for isolated montane species, such as Royle's pika. We studied the influence of habitat microclimatic conditions on the
activity patterns of Royle's pika in the period May to August (2008 to 2011) within six permanently marked plots
deployed along an attitudinal gradient (2,900 to 3,680 m) within the Kedarnath Wildlife Sanctuary, India. Pika activity was
recorded through direct observation during the period from 0600 to 1900 on each observation day and normalised as
the percentage of individuals observed in an hourly interval relative to the maximum number of individuals sighted in a
particular plot during the observation day. Microclimatic data in pika habitat were recorded across the altitudinal zones
using automatic data loggers, a soil thermometer and a hygrometer deployed within the site during each observation
interval.

Results: Using linear mixed effect models, we simulated pika activity as the number of active versus inactive individuals
with logical alternate combinations of habitat microclimatic parameters, altitudinal zone and daily time interval. The pika
had a bimodal activity pattern with high activity in the morning and evening hours and low activity during midday
hours. The best fit candidate model demonstrated that pika activity increased with ambient humidity and decreased
with increasing temperature.

Conclusions: The reduction of activity due to an increase in temperature was significantly higher in the subalpine zone
(2,900 to 3,200 m) than in the alpine zone (3,400 to 3,680 m). Thus, Royle's pika avoids heat stress by reducing activity
during warm midday hours and taking shelter in microclimatically favourable cooler talus habitat. We showed that
changes in habitat microclimatic conditions (specifically, increases in temperature) might significantly restrict Royle's pika
daytime activity.
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Background

Knowledge of the interactions between an organism and
its environment is often considered crucial for improved
understanding of species traits (Parmesan and Yohe 2003).
Species adapted to cold regions (high-altitude or high lati-
tude) experience marked seasonality; the growing period
for vegetation is short and winters are long (often with a
thick snow cover). Thus, the occurrence and distribution
of species in mountain ecosystems are strongly influenced
by ambient temperature and precipitation (Grinnel 1917;
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Heatwole and Taylor 1987; Korner 2007). Cold-adapted al-
pine species are more vulnerable to climate change than
those in tropical or temperate environments. Furthermore,
climate warming may occur more rapidly at high altitudes
than at lower elevations (Naftz et al. 2002; Mortiz et al.
2008). Although the general trends are becoming clearer,
the details of species-specific responses to climate change
have not been documented for many alpine areas around
the planet. Detailed quantitative baseline ecological studies
are needed for improved understanding of direct and indir-
ect effects of climate change on alpine species and for the
design of effective conservation measures.

The distribution ranges of several species (including at
least one high-altitude, small mammal) fluctuated both
regionally and globally during the climate changes that
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occurred in previous glacial-interglacial periods. (Grayson
2006; Mortiz et al. 2008; Galbreath et al. 2009; but also see
Millar et al. 2013). Walther et al. (2002) postulated that
many montane species will migrate to higher altitudes if
ambient temperatures increase during periods of climate
change. However, some high-altitude lagomorphs, such as
the talus-dwelling pikas (Ochotona spp.) are confined to
small, isolated and fragmented pockets of the talus habitat
throughout their lifespans and have limited capability
for long-distance migration (Smith and Weston 1990;
Peacock 1997). Moreover, pikas are already confined to
high elevations and have little opportunity for disper-
sion to higher slopes. Rapid changes in climate during
the latter part of the 20th century resulted in the local
extinction of the American pika (Ochotona princeps), a
high-altitude lagomorph, in many parts of the western
USA (Beever et al. 2003, 2010, 2011, 2013; Wilkening
et al. 2011). Pikas play an important ecological role in
alpine-subalpine ecosystems (Lai and Smith 2003).
They serve as a prey base for several carnivores, such
as marten, stoat, weasel, and red fox, especially during
winter when other rodents hibernate (Roberts, 1977;
Aryal et al. 2010). They also influence plant community
composition in alpine meadows (Bagchi et al. 2006;
Smith and Foggin 1999). Therefore, extirpation of pikas
by climate change may have significant impacts on al-
pine ecosystems.

The relationship between climate and pika persistence
is better documented in North America than in the
Himalaya (MacArthur and Wang 1973, MacArthur and
Wang 1974; Smith 1974;Beever et al. 2003, 2010, 2011;
Wilkening et al. 2011). Ray et al. (2012) showed that the
persistence of American pikas is affected by microcli-
matic condition as well as by the availability of appropri-
ate habitats at higher elevations, which may function as
thermal refugia. Such studies of species-environment in-
teractions contribute greatly to understanding of the im-
pact of global climate change on specific ecosystems
(Elith and Leathwick 2009) because they aid in the pre-
diction of species' responses to changes in temperature,
precipitation, or other factors that alter their habitat
conditions (Millar and Westfall 2010; Beever et al. 2011;
Millar et al. 2013). These predictions are especially use-
ful when there are no baseline or historical data (which
are essential for the detection of change) for a species
that is highly vulnerable to climate shifts.

North American talus-dwelling pikas have a bimodal
activity pattern (high activity during early morning and
late evening) and take shelter in the cool, moist talus
to avoid midday heat (MacArthur and Wang 1973,
MacArthur and Wang 1974; Smith 1974; Beever et al.
2003, 2010, 2011; Wilkening et al. 2011). There is no
equivalent information for any Himalayan pika species.
Although seven species of pika occur in the Himalayas
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(Smith et al. 1990), only a few short-term ecological
studies (each a few weeks in duration) have been con-
ducted (Kawamichi 1968, 1971). An improved knowledge
based on the relations between habitat microclimate and
animal activity across different talus-dwelling pikas will
contribute to better prediction of the possible impacts of
climate change on the species.

We selected Royle's pika (Ochotona roylei Ogilby,
1839; 100 to 150 g of body mass; Alfred et al. 2006) as a
model species and explored the ways in which habitat
microclimate influences the activity of these small alpine
mammals. High animal detection probability, accessible
habitats, simple movement patterns, high sensitivity to-
wards climatic variation and sub-surface habitat usage
make pikas excellent models for examining the influ-
ences of habitat microclimate on alpine mammals in
general (MacArthur and Wang 1973, 1974; Smith 1974).
Royle's pika inhabits open rocky ground and rock talus
in Rhododendron forests at elevations from 2400 m
through 5000 m in the Himalayan region extending
from northwestern Pakistan through India, Nepal and
the adjacent Tibetan plateau (Hoffmann and Smith
2005; Chakraborty et al. 2005). Unlike, North American
species, Royle's pika does not have a prominent winter
food hoarding behaviour (Kawamichi 1968). Earlier studies
have focused on the distribution pattern, winter behaviour,
social organisation, abundance and foraging behaviour of
Royle's pika (Kawamichi 1968, 1969, 1971; Bhattacharyya
et al. 2009; Bhattacharyya et al. 2013), but the influence of
microclimatic conditions on the species’ behavioural re-
sponses has not yet been documented.

The major objective of this study was to describe the
daily activity pattern of Royle's pika at different altitudes
and then determine how habitat microclimate conditions
affect these patterns. Other talus-dwelling pikas, such as
American pikas, have behavioural thermoregulation to
help cope with microclimatic variations, especially in
temperature (Smith 1974). Our postulates were as fol-
lows: i) the activity rate of Royle's pika is mainly influ-
enced by habitat microclimate factors, such as ambient
temperature and moisture and ii) the talus habitat is ther-
mally favourable and provides appropriate temperature
refuges for pikas. To test these postulates, we constructed
a set of competing regression models in an information
theoretic framework based on available ecological know-
ledge that incorporates diverse logical combinations of ac-
tivity, ambient and inside-talus temperature, moisture,
elevation and time of day.

Methods
Study area
The study was performed in the Chopta-Tungnath sector
(30°30" to 31°29'N and 78°12" to 79°13E) of the Kedarnath
Wildlife Sanctuary (ca. 975 km?) in Uttarakhand, India. The



Bhattacharyya et al. Zoological Studies 2014, 53:73
http://www.zoologicalstudies.com/content/53/1/73

elevation in the study area ranges from 2,900 to 3,680 m
(subalpine to alpine). The vegetation in the subalpine
region comprised trees (Quercus semecarpifolia, Rhodo-
dendron arboreum, Abies pindrow, A. spectabilis and
Sorbus sp) and shrubs (R. campanulatum), while diverse
grasses (e.g. Danthonia cachemyriana, Carex setigera) and
herbaceous plants (e.g. Trachydium roylei, Geum elatum,
Plantago brachyphylla) dominated the alpine meadow
vegetation (Sundriyal et al. 1987). Pika habitats in the
study area were rock talus and fractured boulder slope in
the alpine meadows, forest edges and various anthropo-
genic constructs (Bhattacharyya et al. 2009). Although the
study area was located in the upper catchment of the
Alaknanda River in the Chamoli District, Uttarakhand,
India, it contained no glaciers or large streams. Hence,
the rock taluses were highly fragmented and generally
devoid of typical rock ice features (Millar and Westfall
2010). The majority of pika habitats had medium to
steep slopes and west or southwest aspects. Diverse
carnivores, such as jackals (Canis aureus), red foxes
(Vulpes vulpes), yellow-throated martens (Martes flavi-
gula), Himalayan weasels (Mustela sibirica) and raptors
such as Himalayan golden eagles (Aquila chrysaetos
daphanea) and common kestrels (Falco tinnunculus),
were potential predators of pikas in the study area
(Green 1985; Aryal et al. 2010). The local climate is in-
fluenced by southwest monsoons in the summer and
westerly disturbances in the winter (Mani 1981). There
were five prominent seasons in the study area (Table 1;
Adhikari et al. 2012). The area received high precipita-
tion (average annual precipitation: 2,410.5 + 432.2 mm,
mean t SE) from the end of June until mid-September
(Adhikari et al. 2012).

Behavioural observations and microclimate data
collection

This study was conducted during peak pika activity pe-
riods in 4 years (May to August 2008 and 2009; May to
June 2010; June to July 2011). The study area was di-
vided into three altitudinal zones based on vegetation:
subalpine (2,900 to 3,200 m), timberline (3,200 to 3,400 m)
and alpine (3,400 to 3,680 m). In each zone, we marked
out two 50 x 50 m permanent plots in which we recorded
the activity of Royle's pika and the microclimatic features

Table 1 Summary of mean temperature ranges during
different seasons in the study area

Season Months Mean air temperature range (°C)
Spring March to April 12+£02t062+03

Summer  May to June 6.7+10to 113+ 12

Monsoon  June to September 109+ 10to 136 £ 1.1

Autumn  October to November 4.8 + 0.2 to 108 + 1.0

Winter December to February —1.0+021to 43 +03
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of the habitat. Each permanent study plot was a little
bigger than the pika home range size (27.5 x 40.5 m?,
Kawamichi 1968) and located a minimum distance of
100 m from any neighbouring plot; each plots had similar
aspects and slopes. Pikas were scanned through 10 x
40 mm Nikon binoculars from a high vantage point
from which the entire study plot was visible (Altmann 1974).
Individual animals were identified by size, moulting signs on
the body and scar marks on their ears (Bhattacharyya et al.
2009). Pika activity patterns were directly observed from
0600 to 1900 in each day and analysed on an hourly
interval basis, giving a total of 13 h of observations per
session per plot. The proportion of active individuals
(hereafter, ‘activity’) was indexed as percentage of indi-
viduals observed in one interval (1 h) relative to the
maximum number of individuals sighted on that par-
ticular day in a given plot.

The habitat microclimate parameters recorded during
this study were inside-talus temperature and humidity,
open-area surface temperature and humidity and ambi-
ent temperature. Pikas live within the talus slopes or
slide rocks in natural crevices formed between the rocks.
Atmospheric temperature was recorded with automatic
HOBO™ data loggers (Onset Computer Inc., Bourne,
MA, USA) every 10 min. The loggers were placed in se-
cure locations (e.g. tree hollows) at 2 m high and away
from direct sunlight. Temperature data were down-
loaded and averaged to yield hourly average values.
Inside-talus temperature and humidity were recorded
every 30 min with a soil thermometer (Reotemp Inst.
Crop. San Diego, CA, USA) and a hygrometer (Huger,
Villingen-Schwenningen, Germany), respectively; the de-
vices were inserted about 80 to 100 cm into the crevices
during each observation interval, and values were averaged
to obtain hourly values. Open-ground surface temperature
and humidity were measured similarly at a random loca-
tion within the site.

Data analysis

We used a post hoc Student-Newman-Keuls test to detect
significant differences in activity rate during different time
intervals. The multicolinearity between different microcli-
matic variables (ambient temperature, open-area surface
temperature, inside-talus temperature, inside-talus hu-
midity and ambient humidity) was examined through
Pearson's correlation analysis using SPSS 16 software
(SPSS Inc., Chicago, IL, USA). Temperature- and humidity-
related variables were correlated (r > 0.4). Therefore, gener-
alised linear regression was used to model activity as a
function of predictor variables (temperature-related: ambi-
ent temperature, inside-talus temperature, open-area
surface temperature; humidity-related: ambient humid-
ity, inside-talus humidity) in an information-theoretic
(I-T) framework. Relative support for each model and
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each predictor was compared (Akaike information cri-
terion (AIC), Burnham and Anderson 2002) and the
most important temperature- and humidity-related var-
iables (ambient temperature and humidity, see the
‘Results’ section below) were used in further analyses to
predict their relationships with pika activity. Diurnal
ambient temperature and humidity might be influenced
by altitudinal zone as well as by time of day; therefore,
ambient temperature was first regressed against altitud-
inal zone, and the unstandardised residuals were saved.
These un-standardised residuals were regressed against
time of day to obtain residuals of ambient temperature
that were influenced by altitudinal zone or time. The
same procedure was followed for ambient humidity.
Correlated variables were not included in the same can-
didate model other than as specified interaction terms.

Pika activity was modelled as the number of individuals
that were active versus those that were inactive, with lo-
gical alternate combinations of ambient temperature, am-
bient humidity residual values, altitudinal zone and time
group. Although pika observations were separated by dif-
ferent sites and time interval to ensure independence of
observations, the nesting of pika observations within sites
might have been interdependent, thereby violating as-
sumptions relating to independence of the regression
technique (Zar 1999). To eliminate this problem, general-
ised linear mixed-effect models (logit link and binomial
errors) were used with different sites as random intercepts
and years as slopes. This method helps identify the natural
grouping of observations and also explicitly account for
random variations in the odds of activity between sites
and years that might arise from intra-site or year correla-
tions, while other factors remained constant (Zuur et al.
2009). Following Zuur et al. (2009), candidate models were
designed by Laplace approximation and maximum likeli-
hood parameter estimation using the ‘lmer’ function of
the ‘lme4’ package in R software (The R Foundation for
Statistical Computing, http://www.r-project.org/).

Each candidate model was formulated on the basis of
one or more predictor variables. We predicted that the
pika activity rate i) would be influenced by additive as
well as interactive effects of ambient temperature and
humidity and ii) depends on interactive as well as addi-
tive effects of altitudinal zone, time of day, ambient
temperature and humidity. In total, seven models for
pika activity and microclimate were compared for sup-
port of various hypotheses including a null (intercept-
only) model. An information theoretic approach (AIC)
was used to select the best fit model (lowest AIC), and
we obtained final parameter estimates by the restricted
maximum likelihood method. We used paired t tests to de-
termine whether the microclimate conditions (temperature
and humidity) within the talus habitat were significantly
different from the outside environment during midday
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hours. This would help determine whether or not the talus
acts as a thermal refuge for pikas.

Results

In the subalpine zone, the pika habitat included forest
gaps with large rocks (at 2,900 m) and rock talus (at
3,150 m) with large and medium-sized rocks. A pika
habitat in the timberline zone was found in rock talus
(at 3,280 m) with rolling boulders and embedded rocks
interspersed with mixed herbaceous meadows (at 3,300 m).
The pika habitat in the alpine zone was mostly confined
to areas with medium-sized rocks in the rock talus (at
3,444 m) and anthropogenic constructs such as stone
walls, historic foundations and rockwork dams (at 3,520 m).
The maximum number of individuals detected during an
observation interval at any site across all visits in a year
ranged from 0 to 7; thus, our assumption that the max-
imum number of individuals observed during each session
may be considered as a reasonable surrogate of population
size in a particular plot was supported.

Pikas had a bimodal activity pattern during 936 h of
observations in different altitudinal zones (Figure 1).
Our post hoc ANOVA test detected three groups of ac-
tivity: morning, day and evening (Table 2). Maximum ac-
tivity was observed in early morning and during the
evening, while activity dipped to its lowest level in mid-
day hours. The year 2009 was the warmest and driest
over the whole study period. During May to June 2009,
pika activity completely ceased from 1200 to 1400 in the
alpine zone and from 1100 to 1400 in the subalpine
zone. In the timberline zone, activity was reduced in the
midday hours but did not stop altogether in 2008, 2010
or 2011. Pika activity was highest in the timberline zone
during morning (73.73% + 2.61%, mean + SE) and even-
ing (80.00% + 2.46%); in the alpine zone, activity was
highest (34.98% + 2.04%) during the day. Low pika activ-
ity was recorded in the subalpine zone in all time pe-
riods, with lowest values around midday (19.22% =+
1.69%). No significant seasonal variation (Mann-Whitney
U test: W = 10, p = 0.68) was observed in pika activity
during midday hours (1100 to 1600).

Measurements of microclimatic conditions indicate that
the talus habitat was generally cooler and moister than the
outer environment (Figure 2). During the warm midday
hours when the outside environment was hot and dry,
the talus habitat was significantly cooler (inside-talus
temperature: 10.0°C = 0.01°C; ambient temperature:
12.40°C £ 0.14°C; paired ¢ test: t = -18.22; df = 359;
p < 0.001) and moister (inside-talus humidity: 62.62% +
0.08%; ambient humidity: 60.43% + 0.96%; paired ¢ test:
t = 3.11; df = 359; p < 0.01). But in the early morning
(0600 to 0800) and late evening (1800 to 1900), talus
values were significantly warmer (early morning hours in-
side the talus: 8.59°C + 0.25°C; ambient: 7.32°C + 0.27°C;


http://www.r-project.org/

Bhattacharyya et al. Zoological Studies 2014, 53:73
http://www.zoologicalstudies.com/content/53/1/73

Page 5 of 11

100
S04 ‘[‘ % (a) Alpine zone (3400-3680ma.s 1) —['
Bl &
ol | [ ]| | -
40 |
o 20
g -
P '
T 100,
[="
-E 80 _[_ 'I' (b) Timberline zone (3200-3400masl) _E _I_
L 3 £t
> i
{,;' 60 |
T 40
= :
?g 0 e i
2 100
g
§‘ {" oF (c) Subalpine zone (2900-3200mas.l) ‘I‘
& 801 | i
60 j :
409 | 1t g :
201 BB |,I_I |{-| ’—[—I o b
0 : i B : i [{] i s
f=1 f=1 (=3 f=1 [=1 f=1 o (=1 [= (=1 (=3 (=3 h=3
= = <o < (=1 (=1 < =3 (=3 < (=1 (=1 [ =4
e (<] (=3 o vt ol o =T w, O L [~ L%
it T I n = . n n n 7T n n
f=1 o [=1 [ =3 > (=1 (=1 (= (=1 (=3 (=3 =4
(=3 o [=3 (=1 (=1 o (=3 [=2 (=} [=4 [=4 (=1 (=3
\=4 ~ (=] (= (= —_ 3] o - w, (=) ~ (7]
(=] [=—1 (=1 o =t o=t — —_— —_ — —_— —_— —
Time intervals( hrs.)
Figure 1 Averaged (across all years and sampling periods) Royle's pika activity in different altitudinal zones (a, b, c) during various
time intervals.

Table 2 Summary statistics of post hoc Student-Newman-
Keuls test for significant differences in pika activity rate
during different time groups

Observation period Reclassified time group Activity rate subset

for a = 0.05
0600 to 0700 Morning (0600 to 1100) 4415 + 3.70
0700 to 0800 4170 £ 3.89
0800 to 0900 48.77 £ 356
0900 to 1000 4690 + 2.84
1000 to 1100 4350 + 3.11
1100 to 1200 Midday (1100 to 1600) 2827 + 286
1200 to 1300 2011 £ 226
1300 to 1400 2334 +229
1400 to 1500 2895 + 241
1500 to 1600 34.94 £+ 2.08
1600 to 1700 Evening (1600 to 1900) 5231 + 261
1700 to 1800 51.06 + 363
1800 to 1900 39.90 £+ 3.83

We reclassified the time intervals into time classes, which have similar activity
rates and are contiguous with one another. Thus, we obtained three time classes.

paired ¢ test: t = 12.12; df = 143; p < 0.001; late evening
hours inside the talus: 9.66°C + 0.20°C; ambient: 8.40°C +
0.21°C; paired ¢ test: t = 9.39; df = 73; p < 0.001) than the
outside environment.

Ambient temperature and humidity, other temperature-
related variables (inside-talus temperature and open-area
surface temperature) and humidity-related variables
(inside-talus humidity) received more support (AAIC >2)
than the null model as explanatory predictors of any rela-
tionship between pika activity and microclimate. There-
fore, ambient temperature and humidity were used in
further analyses of the way in which pika activity was gov-
erned by direct and interactive influences of habitat
microclimatic conditions, altitude and time of day.

The best candidate model explaining the relationship
between pika activity and habitat microclimate received
more support than the null model (AAIC = 1,263.83),
and no other model received similar support (all AAIC
values >2, Table 3). The standard deviation of site ran-
dom effects was negligible (SD = 107'%), but the year
standard deviation across sites was large (Year 2009, SD =
0.034; Year 2010, SD = 0.052; Year 2011, SD = 0.076) indi-
cating that much of the variability in activity was random
variation between site-year combinations. In the best fit
model, a proportion of pika activity was found to be
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throughout the entire study period (2008 to 2011).
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Figure 2 Royle's pika habitat microclimatic parameters. The parameters (ambient temperature is shown by a black solid line, inside-talus
temperature is shown by black dashed lines, ambient humidity is shown by a grey line) in different altitudinal zones (a, b, c) and time intervals

explained by the additive effects of ambient humidity,
time of day and the interactive effects of ambient air
temperature and altitudinal zone. The best fit model p-
coefficient estimates suggested a negative influence of
ambient temperature (5 = -0.14 + 0.01, p < 0.001) and
a positive influence of ambient humidity (8 = 0.01 +
0.001, p < 0.001) on pika activity (Table 4). The model
also suggested that pika activity was significantly lower
in the subalpine zone (5 = -0.43 = 0.08, p < 0.001)
compared to that in the alpine zone. Pika activity was
significantly lower (8 = -1.48 + 0.074, p < 0.001) during

daytime hours than in the early morning or evening hours.
The interactive effect of ambient temperature and altitud-
inal zone suggests that when ambient temperature
increases, pika activity will significantly reduce (8 = -0.06 +
0.02, p < 0.05) more in the subalpine zone than in the
alpine or timberline zones. The random effect of the best fit
candidate model indicated a very low site effect.

Discussion
Activity is considered to be the most significant factor con-
tributing to variability in physiological states (especially
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Table 3 Relative support for candidate models analysing competing ecological hypotheses concerning factors affecting

activity of Royle's pika

Model (predictor) L K df AIC AAIC w; r
Ambient temperature x altitude zone + ambient humidity + time of day —638.39 7 19 1,314.79 0 0.94 045
Ambient temperature + ambient humidity + altitude zone + time of day —643.46 6 17 1,320.94 6.14 0.04 0.39
Ambient temperature x ambient humidity + time of day —6454 5 16 1,322.81 801 0.02 037
Ambient temperature + time of day —681.25 4 14 1,390.5 757 0.00 023
Ambient temperature —-965.9 3 12 1,955.81 641.01 0.00 0.23
Ambient humidity -1,2393 3 12 2,502.52 1,187.72 0.00 0.13
Null model -1,2783 3 1 257862 1,263.83 0.00

Log-likelihood (L), number of estimated parameters (K), degrees of freedom (df), Akaike information criterion (AIC), difference in Akaike information criterion
(AAIC), Akaike weight (W) and estimate of variation (r%) are reported for each model.

body temperature) among small mammals (McNab and
Morrison 1963; Hart 1971). Pika populations generally
avoid midday heat during summer. The American pika
(O. princeps) becomes inactive during the early daytime
hours at low altitude but remains active throughout the
day at high altitude (Hall 1946; Smith 1974). The Collared
pika (O. collaris) remains active throughout the day in
Canada, whereas the Japanese pika (O. hyperborea) is ac-
tive during early morning and late evening for parts of the
year other than monsoonal periods, when it remains active
throughout the day (Broadbooks 1965; Kawamichi 1969).
In winter, the large-eared pika (Ochotona macrotis) re-
mains active all day, presumably because it lives at higher
altitudes than Royle's pika in Nepal (O. roylei), which re-
mains active only during dawn and dusk hours in winter
(Kawamichi 1971). Similarly, Alpine pika (Ochotona
alpina), Northern or Siberian pika (Ochotona hyperborea)
and Turkestan red pika (Ochotona rutila) are also diurnal,
but Ili pika in China is reported to have a nocturnal activ-
ity pattern (Kawamichi 1969; Smith et al. 1990; Sokolov
et al. 2009).

Royle's pika tended to avoid the daytime warm tempera-
tures by restricting high levels of activity to early morning
and late evening. Activity increased with increasing

Table 4 Influence of parameters on pika activity estimated
by the best fit candidate model (minimum AIC)

Parameter B+ SE Z value p value
Intercept 0.891 + 0.06 13.84 0.001
Ambient temperature —0.143 £ 0.01 -804 0.001
Ambient humidity 0.017 £ 0.001 8.69 0.001
Timberline zoneas —0.004 + 0.08 —-0.05 0.958
Subalpine zone —0433 £ 0.08 -539 0.001
Midday time group —1.486 £ 0.07 —-19.5 0.001
Evening time group 0.037 £ 0.08 042 0673
Ambient temperature X —0.033 £ 0.02 -1.19 0.232
timberline zone

Ambient temperature X —-0.069 = 0.02 261 0.001

subalpine zone

altitude. The data support the hypothesis that Royle's
pika, like other talus-dwelling pikas (O. princeps), has
behavioural thermoregulation in addition to physiological
mechanisms of temperature control. When stressed by
high temperatures, the animals at low altitudes seem to
restrict their diurnal activity (Smith 1974). Results of our
best fit regression model which fits our first prediction,
temperature and humidity, are key controlling elements in
pika behaviour. We found that the impact of habitat
microclimate on pika activity was strongest at low altitude.
Royle's pika lives in very deep crevices in rock talus, and
due to logistical constrains, we were able to record the
temperature and humidity only at 80 to 100 cm inside the
talus. Hence, the temperature and humidity difference be-
tween the talus inside and outside environments (approxi-
mately 2%) reported may be comparatively lower than
what pikas might experience in reality further deep inside
the talus.

Pikas spend 25% to 55% of their surface active time
foraging (Smith and Ivins 1983). Pikas were less active
(<40% of animals active) in the subalpine zone (than in
the alpine zone) for longer periods of time (5 h of in-
activity in the subalpine zone versus 2 h in the alpine).
Differences in ambient temperatures between the zones
accounted for these differences in activity patterns. Royle's
pika does not hoard a winter hay pile (Kawamichi 1968);
after a long winter with very limited food availability,
the summer-monsoon season is the only period of the
year in which adequate energy reserves can be accumu-
lated through the consumption of food. However, day-
time high temperatures reduce pika activity, and hence
food intake, during some of the daylight hours. High
midday temperatures may impose crepuscular foraging
on the animals, which in turn might lead to increased
predation risk. These trends have been observed in
other temperature-sensitive species, such as Mexican
lizards, which face high local extinction risk due to
temperature-induced activity restriction during the repro-
ductive season (Sinervo et al. 2010). These activity restric-
tions prevent the acquisition of adequate resources
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through foraging, and the impact on resources required
for reproduction has negative effects on the population
growth rate.

Diverse physiological constraints may be important de-
terminants of the distributional limits of species and
populations (Gaston and Spicer 1998; Chown and Gaston
2000). Generally, pikas have a higher (2°C to 3°C higher)
body temperature than other small mammals living in
talus areas. The elevated body temperatures of pikas
are attributable to their thick fur layer and to the pres-
ence of microorganisms such as bacteria, which aid in
digestion (MacArthur and Wang 1973). Early studies
on the behaviour and physiology of the American pika,
which has ecological requirements similar to those of
Royle's pika, demonstrated that the animals become
hyperthermic and die after even a brief exposure to mod-
erate ambient temperatures (25.5°C to 29.4°C) and intense
solar radiation, a combination that prevented thermoregu-
lation (MacArthur and Wang 1973, 1974; Smith 1974).
American pikas have a relatively narrow differential be-
tween their resting (40.1°C) and lethal (43.1°C) body tem-
peratures, which is a reflection of a limited capability for
handling heat stress (MacArthur and Wang 1973). Grinnel
(1917) suggested that temperature is a key factor that gov-
erns American pika distribution. Temperature is also
among the primary environmental factors controlling ju-
venile pika dispersal (Smith 1974; Hafner 1994) and is a
plausible predictor in many American pika extirpation
and distribution change models (Wilkening et al. 2011). A
winter snow cover provides thermal insulation for pikas
exposed to extreme temperature fluctuations; an adequate
snow cover reduces cold stress and increases survival
(Marchand 1996; Franken and Hik 2004; Morrison and
Hik 2007; Beever et al. 2010). The American pika uses
talus for thermoregulation because the habitats it provides
are cool, moist refuges in the summer months and provide
insulation from cold in the winter (Beever et al. 2010).
Our measurements of Royle's pika talus habitat microcli-
matic conditions support our prediction that talus pro-
vides a thermal refuge: the talus microclimate was
significantly cooler and more stable than the outer en-
vironment, especially during midday hours. Pikas re-
duced their surface activity and remained in their talus
habitat during the warmest time of the day, thereby
avoiding heat stress. Similar to pikas, other montane
small mammals such as yellow-bellied marmots (Marmota
marmota) were also found to avoid midday high
temperature and take refuge inside their cooler burrows
(Tiurk and Arnold 1988). They were found to reduce
above-ground activities and take short foraging bouts
when ambient temperature exceeds 25°C (Tirk and
Arnold 1988). Piute ground squirrels (Spermophilus
mollis) were also found to be active throughout the day
in cooler microclimate at the sagebrush habitat and
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showed restricted bimodal activity in warm grassland
habitat (Sharpe and Horne 1999). White-tailed deer
(Odocoileus virginianus) activity was found to be high
when ambient temperature ranges between 6°C to 16°C
and further fluctuations in ambient temperature reported
to decrease their activity rate significantly (Beier and
McCullough 1990). High environmental temperature were
also found to decrease foraging activity, increase grooming
and resting activity in primates such as chacma baboons
(Papio hamadryas ursinus; Hill 2006). Furthermore, be-
havioural thermoregulation was also found to affect their
habitat choice and day journey routes (Hill 2006).

Earlier research demonstrated a significant influence
of the unique characteristics of talus habitats and of cli-
matic drivers on American pika populations (Ray et al.
2012; Jeffress et al. 2013). Millar and Westfall (2010)
found that periglacial rock ice features in pika habitat
creates unique microclimatic conditions that make these
rock taluses significantly cooler in summer and warmer
in winter, creating a desirable thermal refuge. Beever
et al. (2008), Simpson (2009); Rodhouse et al. (2010) and
Millar et al. (2013) recently reported the existence of
low-elevation pika populations that persist beyond the
limits of their previously described bioclimatic niche.
Erb et al. (2011) determined that of 69 locations historic-
ally occupied by pikas in the southern Rocky Mountains
(USA), only four have been extirpated over recent de-
cades. Moreover, Jeffress et al. (2013) found that the rela-
tionship between climate and American pika distributions
was complex and locality-specific, suggesting multiple
mechanisms through which climate may affect the focal
species. Thus pika responses towards climate change are
not simple and can vary significantly among locations.
However, with the exception of North American pikas, in-
formation on the influence of habitat microclimate, ther-
mal biology and the potential impact of climate change on
population ecology is extremely limited for these small
mammals (Table 5). Our study provides new data on the
thermal biology of an Asian, talus-dwelling pika that oc-
curs at relatively low latitudes and experiences climatic
conditions (e.g. warmer summer and high monsoon pre-
cipitation) different from those of American pikas. We
provide critical baseline ecological information for fu-
ture climate change research on small mammals in the
Himalaya. This is only a first step, for the mechanisms
through which climate stress acts need to be studied com-
prehensively in order to better understand how climate
change affects biotas and to enable a wider application of
information for monitoring, management and conserva-
tion strategies (Hallett et al. 2004; Ray et al. 2012).

Conclusions
An understanding of factors influencing Royle's pika activ-
ity is fundamental for evaluating the long-term viability of



Table 5 Information available on influence of climate on various ecological aspects of talus-dwelling pikas

Species Distribution Activity  Habitat Eco physiology Ecology Climate change research
pattern microclimate Heat stress Cold stress
American pika USA, Canada“ Diurnal®®  Cool and Upper lethal body Thin and short duration Temperature influences diurnal Distribution  range shift’,
(Ochotona princeps) moist* temperature (43.1°C) and ~ snow cover results in cold  activity and juvenile dispersal® Populati tiroation™t
normal body temperature  stress and population opulation extirpation
40.1°C4m extirpation®
Collared pika USA, Canada*“ Diurnal®® - Normal body temperature  Thick snow layer protects - Considered as sensitive to
(Ochotona collaris) 39.0°C" against very cold climate change due to
temperature®, habitat loss, change in food
e o
Long winter delayed composition, population
partuation?
Royle's pika India, Nepal, Pakistan, China® Diurnal®®  Cool and - - - -
(Ochotona roylei) moist'
Turkestan red pika  Tajikistan, Uzbekistan, Diurnal®c - - - - -
(Ochotona rutila) Kyrgyzstan, Kazakhstan,
Afghanistan, China“
Large-eared pika Afghanistan, Bhutan, China, ~ Diurnal®9 - - - - -
(Ochotona macrotis) India, Kyrgyzstan, Kazakhstan,
Nepal, Pakistan, Tajikistan®
lli pika (Ochotona China® Nocturnal” - - - - -
iliensis)
Northern or Siberian  China, Japan, Korea, Diurnal® - - - - -
pika (Ochotona Mongolia, Russia®
hyperborea)
Himalayan pika China, Nepal® Diurnal®c - - - - -
(Ochotona
himalayana)
Glover's pika China“ - - - - - -
(Ochotona gloveri)
Gaoligong pika China' - - - - - -
(Ochotona
gaoligongensis)
Alpine pika China, Kazakhstan, Diurnal - - - - -

(Ochotona alpina)

Mongolia, Russia“

?Higher altitude population active throughout the day and lower altitude population active early morning and late afternoon. PMostly active during early morning and late afternoon. References: “Smith et al. 1990;
9Smith 1974; *MacDonald and Jones 1987; 'Kawamichi 1971; 9Kawamichi 1985;"Li et al. 1993; 'Kawamichi 1969; 'Sokolov et al. 2009; kSimpson 2009; 'Present study; ™MacArthur and Wang 1973; "Irving and Krog 1954;
°Beever et al. 2010; PMorrison and Hik 2007; Franken and Hik 2004; "Mortiz et al. 2008; *Beever et al. 2003; 'Wilkening et al. 2011; “COSEWIC 2011. Hyphens denote no information available.
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the species in the Himalaya. The alpine region of the
Himalayas is extremely vulnerable to global warming
(Singh and Bengtsson 2004). During the last two decades,
seasonal mean temperatures in western Himalaya have
increased by approximately 2°C and maximum temper-
atures have increased by approximately 2.8°C (Shekhar
et al. 2010). If climate at lower altitudes were to be-
come inhospitable for Royle's pikas because of changes
in temperature, the animals are likely to move upslope,
like other alpine mammalian species (Guralnick 2007).
Though this upslope range shift might help them cope
with the warming climate, it may not improve connect-
ivity between habitats, which in the long run will re-
duce the resilience of pika populations in the face of
any threat, including climate change (Gilpin and Soulé
1986; Sekercioglu et al. 2008) and may finally lead to local
extinction of the species. Alternatively, as we demonstrated
in this study, Royle's pikas might also be able to cope and
survive in changing environments through behavioural
adaptation to avoid heat stress, i.e. occupying thermal ref-
uges (habitat with cool and moist microclimate).
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