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An autoregressive model for global vertebrate
richness rankings: long-distance dispersers may
have stronger spatial structures
Youhua Chen1,2
Abstract

Background: Spatial autocorrelations are one of the most prevalent natural phenomena in ecological data. It is
generally assumed that short-distance dispersers are spatially limited and thus have stronger spatial autocorrelation
patterns than do long-distance dispersers. To test this hypothesis, I quantified and compared spatial autocorrelation
patterns of global richness rankings of amphibians, mammals, and birds using an autoregressive model. A species
richness ranking was used as a proxy of species richness, which was obtained through a digital image processing
method from published world maps of species richness.

Results: The results showed that the spatial structure could explain the highest variance involved in global richness
rankings of mammals (intermediate-distance dispersers), followed by birds (long-distance dispersers). In contrast,
amphibians, representing short-distance dispersers, had the lowest degree of spatial autocorrelation patterns. Thus,
the present results do not support the abovementioned hypothesis.

Conclusions: In conclusion, a complex relationship exists between an animal's dispersal ability and its spatial
autocorrelation pattern. The dispersal abilities of species can be negatively correlated with spatial autocorrelation
patterns.
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Background
Spatial autocorrelations are a common phenomenon
in ecological and evolutionary studies (Legendre 1993;
Legendre and Legendre 1998). Many studies attempted to
quantify and eliminate spatial autocorrelation signals to
better evaluate the influence of environmental variability in
shaping species community structures (Borcard et al. 1992;
Iop et al. 2012), distributions (Dormann 2007; Dormann
et al. 2007; Sullivan et al. 2012), and diversities (Tognelli
and Kelt 2004; Diniz-Filho et al. 2009).
Generally, there are two forms of spatial autocorrel-

ation: autocorrelations of environmental gradients and
species' distributions. Herein, autocorrelations of species'
distributions were specifically measured as the number of
species found in each grid cell as used in previous studies
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(Tognelli and Kelt 2004; Vieira et al. 2008), or aggregated
occupancy information of each single species. Spatial auto-
correlations of species richness are derived from spatial au-
tocorrelations of environmental variables and/or dispersal
limitations of each single species. Because all examined
vertebrate groups are constrained to the global terrestrial
scale, it is assumed that the influence of spatial autocorre-
lations of environmental variables is basically equivalent
over various vertebrate groups (because the distributions
of all species are bound to the Earth's surface). As a conse-
quence, it is supposed that resultant species richness pat-
terns are principally driven by differences in dispersal
abilities among taxonomic groups. Of course, this strong
assumption cannot eliminate the fact that important envir-
onmental predictors can vary across different species, but
the central goal of the present study was to reveal the effect
of dispersal on species richness patterns.
Community ecology and macroecology argue that dis-

persal is strongly correlated with spatial autocorrelations
(Bahn et al. 2008; Shurin et al. 2009; Flinn et al. 2010;
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Caruso et al. 2012; Curini-Galletti et al. 2012). One com-
mon associated assumption is that species exhibiting long-
distance dispersal should be less influenced by space, since
they can disperse across different habitats and choose the
most suitable ranges for survival (Shurin et al. 2009; Flinn
et al. 2010). Thus, it is predicted that the environment
should determine their distribution and community struc-
ture. In contrast, short-distance dispersers are not able to
occupy all suitable areas around the world and are typically
constrained to narrow ranges (being spatially clumped).
Thus, because of a limited dispersal ability, they should be
less influenced by the environment compared to long-
distance dispersers. So, short-distance dispersers are com-
monly presumed to be spatially limited and have stronger
spatial autocorrelation patterns (Bahn et al. 2008; Shurin
et al. 2009; Flinn et al. 2010). This hypothesis has been
confirmed in plant (Flinn et al. 2010) and freshwater
(Shurin et al. 2009) communities.
Because ectothermic vertebrates are thought to have

poorer dispersal abilities compared to endothermic ver-
tebrates (Cook et al. 2000; Chen et al. 2012; Tingley and
Dubey 2012), it is hypothesized in the present study that
global richness patterns of birds (long-distance dispersers)
should have less of a spatial autocorrelation structure,
followed by mammals (intermediate-distance disperses). In
comparison, the global richness of amphibians (short-
distance dispersers) should possess the strongest spatial
autocorrelation signal. This hypothesis was established
based on a mean field approximation. That is, complex
spatial autocorrelation patterns of global richness patterns
of species assemblages are determined by the simple spatial
autocorrelation pattern derived from the distribution of
each single species in that assemblage.
In the present report, I developed a simple and novel

digital image processing algorithm to obtain rough glo-
bal richness patterns. The algorithm can extract color
information (in terms of red, green, and blue channels)
from previously published world maps of species rich-
ness. Through k-means clustering, this color information
extracted from pixels of the map can be classified into
different classes to represent richness rankings of species,
which can serve as a proxy for species richness. Then,
using a simple autoregressive model, I revealed global pat-
terns of spatial autocorrelations in richness rankings of
amphibians, birds, and mammals and tested the above hy-
pothesis linking dispersal abilities and spatial structure
patterns of species assemblages.

Methods
Global richness rankings of amphibians, birds, and mammals
Worldwide richness patterns of birds, mammals, and am-
phibians were extracted and standardized using published
digital maps, which were collected from a previous report
(Grenyer et al. 2006). Extraction of species richness in each
grid cell was difficult because the digitized map had limited
resolution and the colors representing different species
richness values were difficult to match. Thus, I considered
an alternative option and used a richness ranking as a
proxy to study the relationship of space and species diver-
sity. The k-means clustering method was employed to ob-
tain 15 classes of species richness based on the extracted
digitized color information (in terms of red, green, and
blue channels) from the map pixels. Because not all classes
of the pixel colors could represent major richness gradients
of terrestrial species and some may represent species rich-
ness in small areas, marginal areas, or oceanic islands, each
color class was checked and compared by eye to obtain
major richness rankings at a continental scale based on the
published literature (Grenyer et al. 2006). Some grid cells
for which it was difficult to determine their richness rank-
ings or that were located on islands and at edges of terri-
tory were not considered. As such, I obtained 12 rankings
for birds, 9 for amphibians, and 8 for mammals. The
clustering algorithm was implemented using R software
(R Development Core Team 2011). Figure 1 demon-
strates and explains the procedures of color extraction
and clustering in detail to obtain species richness rank-
ings from a hypothetical species richness map.
When the spatial autoregression analysis was carried out

on the richness ranking data of the present study, a spatial
weighting square matrix, W, was incorporated. During the
analysis, computational difficulty was encountered: in my
original datasets, there respectively were 44,319, 38,955,
and 42,623 sampling points for birds, amphibians, and
mammals (data available upon request). With these ori-
ginal data, the W matrix would have become a super-large
sparse matrix, which would have been hard to generate
and calculate. In view of this, I considered a resampling
process to obtain new rankings of the three taxonomic
groups with a coarser spatial grid resolution of 6° × 6°.
Thus, the resultant datasets for birds, amphibians, and
mammals respectively contained 529, 510, and 520 sample
grid cells. The richness ranking of each new grid cell was
recalculated by averaging those from the original points,
which had to fall within the new grid cell.

Measure of the spatial autocorrelation
The spatial autocorrelation was analyzed using Moran's I
index as follows:

I ¼ n
S

Xn
i¼1

Xn
j¼1

wij xi−�xð Þ xj−�x
� �

Xn
i¼1

xi−�xð Þ2
; ð1Þ

where n is the number of quadrats (or grid cells) in the
study, xi and xj represent values of species richness in
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Figure 1 Illustration of the color extraction and classification procedures. The procedures in the present study were used for generating
species richness ranks of grid cells from a hypothetical richness map. The core of this procedure was to convert the color from each of the grid
cells in the map into red, green, and blue (RGB) channels with numeric values ranging 0 ~ 255. The k-means clustering method was then applied
to the resultant RGB color channel matrices to reconstruct clusters of groups for the RGB numeric data. Finally, a naked-eye check of the numeric
data grouping was carried out to match the richness classes in the original and hypothetical richness maps. After the visual check, a richness rank
was assigned to each of the grid cells to obtain the resultant richness rank map, which was used for the subsequent autoregressive analyses.
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quadrats i and j, �x is the mean of all x, and wij is an
element in the weighting matrix, W. It can be defined as
follows:

wij ¼ 1
0

i; j is within a given distance class
otherwise

:

�
ð2Þ

This weighting matrix, W, is called a binary matrix based
on the definition of its elements wij using Equation 2.
Finally, S represents a normalizing factor as follows:

S ¼
Xn
i¼1

Xn
j¼1

wij: ð3Þ

Autoregressive spatial modeling
There are a number of autoregressive models (Tognelli
and Kelt 2004; Dormann et al. 2007), and the simplest
one I used was adopted from previous works (Diniz-Filho
et al. 1998; Dormann 2007; Vieira et al. 2008; Diniz-Filho
et al. 2012):

y ¼ ρWyþ ε; ð4Þ
where W is the row-standardized weighting matrix, ρ is
the autoregressive parameter (which I set to 0 ≤ ρ ≤ 1),
and ε is an error vector. This model can be fitted by
maximum-likelihood procedures. The squared correl-
ation between the observed richness ranking, y, and the
estimated ŷ ¼ ρWy gives the pseudo-R2 of the model,
showing the proportion of explained variance attributed
to the spatial autoregressive process.
There are numerous possible weighting matrices, W; a

simple one is the matrix identical to that defined in
Moran's I formula as in Equation 2. Another option for
the weighting matrix, W, was derived from a previous
study (Vieira et al. 2008), each element of which is writ-
ten as

wij ¼ 1=Da
ij; ð5Þ

where Dij is the geographic distance between the cen-
troids of grid cells i and j. Various values of a, ranging
1 ~ 1.5 with steps of 0.1, were tested in this study
(other values of >1.5 are possible, but I found that the
likelihood fitting for ρ would exceed the upper bound
of 1). I called this W matrix constructed from geo-
graphic distances the distance matrix.

Model evaluation
Autoregressive models with different weighting matrices
were also tested and compared using different methods
(Vieira et al. 2008). R2 values of the model indicate the
ability of each model to explain the spatial structure of
the species richness ranking, whereas an autocorrelation
analysis based on Moran's I index in the residual term, ε,
indicate the effectiveness of the model for removing the
spatial autocorrelation structure. The Akaike informa-
tion criterion (AIC) (Akaike 1974) was also used to
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choose the best model. For each model, the modified
AIC (AICC) corrected for small samples is computed as
(Haining 2003):

AICC ¼ 2n log σ2
� �þ 2K

n
n−K−1

; ð6Þ

where n is the number of cells, K is the number of pa-
rameters in the model, and σ2 is the variance of the re-
siduals of each regression model, so the first term above
was positive in an effort to minimize the variance. The
variance of the residuals was used here as a proxy
for the likelihood of the model given the data. The
term n

n−K−1 is a small sample correction and tends toward
1 as n increases. I compared AICC values of each model
using the difference between the AIC of each model and
the minimum AICC found. A value of >10 indicates that
the model has a poor fit relative to the best model,
whereas a value of <3 indicates that the model is equiva-
lent to the best model (Vieira et al. 2008).

Results
Patterns of spatial autocorrelations in global richness
rankings of amphibians, mammals, and birds
The spatial autocorrelation signal was greatest for mam-
mals and lowest for amphibians (Table 1), based on the
fact that the pseudo-R2 was highest while the AICC was
lowest for mammals.
Increasing the power factor, a, when computing the W

matrix using Equation 5, increased the spatial autocor-
relation signal in the richness rankings, as evidenced by an
increasing pseudo-R2, a decreasing AICC value, and an in-
creasing Moran's I index. This pattern was universal across
all three vertebrate taxonomic groups (Table 1).
Table 1 Comparison of autoregressive models with different

W Mammals

ρ AICC R2 Moran's I ρ A

Distance matrix

a = 1 0.118 7,443.883 0.914 0.184 0.126 8,0

a = 1.1 0.17 7,414.297 0.916 0.213 0.182 7,97

a = 1.2 0.242 7,382.141 0.919 0.243 0.261 7,90

a = 1.3 0.341 7,347.771 0.921 0.274 0.369 7,8

a = 1.4 0.476 7,311.783 0.924 0.306 0.516 7,76

a = 1.5 0.658 7,274.965 0.927 0.338 0.714 7,69

Binary matrix

Class = 2 0.003 9,385.66 0.441 −0.031 0.003 9,27

Class = 4 0.003 9,385.66 0.441 −0.031 0.003 9,27

Class = 6 0.003 9,305.439 0.483 0.011 0.003 9,21

Class = 8 0.003 9,305.439 0.483 0.011 0.003 9,21

Class = 10 0.003 9,305.439 0.483 0.011 0.003 9,21

ρ, autoregressive parameter; AICc, modified Akaike information criterion; R2, the pro
Analogously, increasing the sampling neighboring dis-
tance classes when computing the W binary matrix using
Equation 2 also increased the spatial autocorrelation signal
in species richness rankings. The patterns were basically
similar to cases of increasing the power factor, a, except for
the situation with Moran's I index: when the sampling
neighboring classes exceeded six, it basically remained un-
changed even when neighboring classes increased.
When comparing the distance and binary W matrix

models, it was found that the distance W matrices ex-
plained a greater amount of the variation. Thus, the dis-
tance weighting matrix performed better than the binary
neighboring weighting matrix in modeling the spatial
autocorrelation signal in species richness patterns. This
pattern was not compared or identified in a previous
work (Vieira et al. 2008), in which only different network
models were compared to construct a W matrix.

Long-distance dispersers can have a strong spatial structure
When comparing amphibians and birds, birds are def-
initely better dispersers than amphibians. However,
contradictory to the abovementioned hypothesis that short-
distance dispersers should have stronger spatial autocorrel-
ation patterns, birds were found to have a stronger spatial
autocorrelation pattern compared to amphibians in the
present results. Furthermore, although the dispersal ability
of mammals is weaker than that of birds, and mammals
have the strongest spatial effect, the explained variance at-
tributed to the spatial autocorrelation (indicated by fitting
determination R2) for birds was slightly smaller than that
for mammals (Table 1). The explained variance became al-
most identical when only cases for the binary W matrix
were considered.
W for assessing global patterns of spatial autocorrelations

Amphibians Birds

ICC R2 Moran's I ρ AICC R2 Moran's I

34.76 0.784 0.206 0.117 8,693.137 0.862 0.153

2.835 0.797 0.238 0.169 8,664.672 0.866 0.18

6.554 0.81 0.27 0.241 8,631.682 0.87 0.208

36.91 0.822 0.304 0.341 8,594.431 0.874 0.237

5.194 0.834 0.338 0.478 8,553.433 0.879 0.268

2.925 0.846 0.372 0.662 8,509.428 0.884 0.299

3.898 0.274 −0.021 0.004 10,170.65 0.442 0.016

3.898 0.274 −0.021 0.004 10,170.65 0.442 0.016

1.798 0.316 0.03 0.003 10,094.25 0.481 0.045

1.798 0.316 0.03 0.003 10,094.25 0.481 0.045

1.798 0.316 0.03 0.003 10,094.25 0.481 0.045

portion of explained variation; a, the parameter in Equation 5.
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Discussion
Herein, I report that when spatial scales are (uplifted/
increased/expanded?), the resultant explained variance
(indicated by R2) attributed to the spatial autocorrel-
ation should accordingly increase. Any scaling-up pro-
cesses for generating either larger sampling grids when
creating the richness ranking vector, y, or more neigh-
bors when creating the weighting matrix W (especially
in binary cases) will result in increasing the spatial auto-
correlation signal in species richness rankings (Table 1).
This phenomenon was observed at various spatial scales,
including local (He and Duncan 2000; Legendre et al.
2009), regional (mammal and bird distributions in the
Cerrado region of Central Brazil (Vieira et al. 2008)),
and global (the present study) ones.
My study contrasted with the common understanding

that long-distance dispersers should be less influenced
by space (i.e., environmentally structured), while dispersal-
limited species should be more influenced by space (Bahn
et al. 2008; Shurin et al. 2009; Flinn et al. 2010). Instead,
long-distance-dispersing species could have a better spatial
structure than short-distance-dispersing species, as evi-
denced by comparing the explained variance for birds and
amphibians. The dispersal ability of species may be in-
accurate for predicting spatial autocorrelation patterns,
which was found across different taxa, including animals,
plants, and parasites (Harrison et al. 1992; Poulin 2003).
Moreover, a previous field study showed that local disper-
sal did not contribute to the spatial autocorrelation of
mistletoe richness per tree (Overton 1996). At a broad
spatial scale, long-range dispersal was found to be import-
ant in structuring species diversity patterns. For example,
long-distance dispersal was vital to the interplay of climatic
conditions in determining the spread of the gypsy moth
(Tobin and Blackburn 2007).
A likely explanation for the present observation that

long-distance dispersers are more spatially structured
may be linked to surrounding environmental conditions.
If a species' distribution is primarily determined by en-
vironmental variables such as climate, which are spatially
structured, then its distribution may have a stronger
spatial autocorrelation than a dispersal-limited species
that is restricted to small habitat patches with little spatial
structure (at the coarse resolution of this study). Such an
explanation can be comparatively tested if environmental
information is included.
However, long-distance dispersers do not necessarily

exhibit stronger spatial autocorrelation patterns when
evaluating their distributions. As evidenced by the present
results (Table 1), the highest spatial structure was observed
for global mammals, although their dispersal abilities are
weaker than those of birds (Chen et al. 2012). This obser-
vation might be attributed to other life history traits of ver-
tebrates. For example, slow growth rates can allow species
to have strong spatial autocorrelation patterns (Bahn et al.
2008). Mammals are slowly growing species compared to
birds and amphibians, suggesting that they could have
strong spatial autocorrelation structures.
However, even though the richness patterns of mam-

mals had the highest spatial structure, it is worth noting
that the fitting powers for birds and mammals were ba-
sically identical with the binary W matrices (Table 1).
Thus, the assumption that longer-distance dispersers pos-
sess higher spatial autocorrelation structures is still valid
for the current observations. This statement is further sup-
ported by a previous work (Vieira et al. 2008): birds were
found to have a higher fitting determination R2 than mam-
mals in the Cerrado region of central Brazil. As such, it can
be further predicted that the environment might have
less influence on long-dispersing species. Actually, it
was shown that there was a complex relationship between
dispersal and spatial autocorrelation (Steinitz et al. 2006;
Bahn 2008), and the dispersal ability of a species cannot
solely determine its spatial autocorrelation because disper-
sal is a mechanism driven by various factors (Buchi and
Vuilleumier 2012) which may or may not lead to a spatial
autocorrelation. Incorporating other factors, including but
not limited to those of the environment, disturbances,
habitat heterogeneity, functional traits, and phylogeny,
might also be important for maintaining spatial autocorre-
lations (Overton 1996; Kallimanis et al. 2006; Zhang et al.
2011; Buchi and Vuilleumier 2012).
It is possible that using richness rankings as a proxy of

richness would lose some information, but major patterns
in the data are still maintained, as evident from the
consistency in the present study and previous reports (He
and Duncan 2000; Vieira et al. 2008; Legendre et al. 2009)
of identifying the positive effect of long-distance dispersers
on promoting spatial autocorrelation patterns. Moreover,
when only digitized maps are available, classifying different
richness classes using the k-means clustering algorithm is
highly accurate and fast. Indeed, it is almost impossible to
extract true richness numbers of species in each grid cell
of published world maps because of such problems as
color matching, resolution, and reconstruction.
Using richness classes allows one to reveal patterns

of spatial autocorrelation in species richness gradients
across the world. It was observed in the present study that
distributions of global amphibians and mammals were
more clustered than that of global birds, indicating that
spatial autocorrelation signals of dispersal-limited species
are more significant than those of long-distance dispersers.
There are certain limitations to the present study.

First, it contained no environmental information of spe-
cies richness data. Although it was previously assumed
that spatial autocorrelation patterns of environmental
variables were similar for the three vertebrate groups
(because their distributions are bounded by the same
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environmental conditions worldwide), a comparative test
of the influences of environmental filtering on different
taxonomic groups can offer a holistic view of spatial
autocorrelation signals in global species richness pat-
terns. Thus, global environmental variables should be in-
corporated in future studies. Second, because richness
rankings of species were extracted from published digital
maps, some color information may have been lost during
the extraction procedure, and the resultant reconstruc-
tion of species richness rankings might not truly reflect
the global species richness of vertebrates. Therefore, the
presently observed spatial autocorrelations of species
richness rankings can be further reevaluated using high-
resolution spatial ranges of species.

Conclusions
There is a complex relationship between an animal's dis-
persal ability and its spatial autocorrelation pattern. The
dispersal abilities of species can be negatively correlated
with spatial autocorrelation patterns. Species richness rank-
ing can be used as a surrogate of species richness, which
can be extracted through a simple digital image pro-
cessing method from published geographic maps of species
richness.

Competing interests
The author declares that he has no competing interests.

Acknowledgements
I am very grateful to the editors and two anonymous referees for their
constructive and critical comments that greatly improved the quality of this
work. I also appreciate Dr. Rana Sarfraz for his help with polishing of the
language. This work was partially supported by the University of British
Columbia.

Received: 20 December 2012 Accepted: 4 September 2013
Published: 12 December 2013

References
Akaike H (1974) Information theory as an extension of the maximum likelihood

principle. In: Petrov BN, Caski F (ed) Proceeding of the second international
symposium on information theory. Akademiai Kiado, Budapest, pp 276–281

Bahn V (2008) Failure to find the relationship between dispersal and spatial
autocorrelation in species abundance. J Negat Results Ecol Evol 5:1–13

Bahn V, Krohn W, O'Connor R (2008) Dispersal leads to spatial autocorrelation in
species distributions: a simulation model. Ecol Model 213:285–292

Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of
ecological variation. Ecology 73:1045

Buchi L, Vuilleumier S (2012) Dispersal strategies, few dominating or many
coexisting: the effect of environmental spatial structure and multiple sources
of mortality. PLoS One 7:e34733

Caruso T, Taormina M, Migliorini M (2012) Relative role of deterministic and
stochastic determinants of soil animal community: a spatially explicit analysis
of oribatid mites. J Anim Ecol 81:214–221

Chen S, Zhang J, Wang X, Sun J, Xue Y, Zhang P, Zhou H, Qu L (2012) Extremely
low genetic diversity indicating the endangered status of Ranodon sibiricus
(Amphibia: Caudata) and implications for phylogeography.
PLoS One 7:e33378

Cook R, Flather C, Wilson K (2000) Faunal characteristics of the southern Rocky
Mountains of New Mexico: implications for biodiversity analysis and
assessment: US Department of Agriculture (USDA) Forest Service General
Technical Report RMRS-GTR-58.60. USDA, Fort Collins, Colorado
Curini-Galletti M, Artois T, Delogu V, De Smet W, Fontaneto D, Jondelius U (2012)
Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size
matter. PLoS One 7:e33801

Diniz-Filho A, Nabout C, M de Campos Telles M, Sares T, Rangel TFLVB (2009) A
review of techniques for spatial modeling in geographical, conservation and
landscape genetics. Genet Mol Biol 32:203–211

Diniz-Filho J, Bii L, Rangel TF, Morales-Castilla I, Olalla-Tárraga M, Rodriguez M,
Hawkins B (2012) On the selection of phylogenetic eigenvectors for eco-
logical analyses. Ecography 35:239–249

Diniz-Filho J, Sant'Ana C, Bini L (1998) An eigenvector method for estimating
phylogenetic inertia. Evolution 52:1247–1262

Dormann C (2007) Effects of incorporating spatial autocorrelation into the
analysis of species distribution data. Glob Ecol Biogeogr 16:129–138

Dormann C, McPherson J, Araujo M, Bivand R, Bolliger J, Carl G, Davies R, Hirzel A,
Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B,
Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the
analysis of species distributional data: a review. Ecography 30:609–628

Flinn K, Gouhier T, Lechowicz J, Waterway M (2010) The role of dispersal in
shaping plant community composition of wetlands within an old-growth
forest. J Ecol 98:1292–1299

Grenyer R, Orme CDL, Jackson SF, Thomas GH, Davies RG, Davies TJ, Jones KE,
Olson VA, Ridgely RS, Rasmussen PC, Ding TS, Bennett PM, Blackburn TM,
Gaston KJ, Gittleman JL, Owens IP (2006) Global distribution and
conservation of rare and threatened vertebrates. Nature 444:93–96

Haining R (2003) Spatial data analysis: theory and practice. Cambridge University
Press, Cambridge

Harrison S, Ross S, Lawton J (1992) Beta-diversity on geographic gradients in
Britain. J Anim Ecol 61:151–158

He F, Duncan R (2000) Density-dependent effects on tree survival in an old-growth
Douglas-fir forest. J Ecol 86:676–688

Iop S, Caldart VM, Dos Santos TG, Cechin SZ (2012) What is the role of
heterogeneity and spatial autocorrelation of ponds in the organization of
frog communities in southern Brazil? Zool Stud 51:1094–1104

Kallimanis AS, Kunin WE, Halley JM, Sgardelis SP (2006) Patchy disturbance
favours longer dispersal distance. Evol Ecol Res 8:529–541

Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology
74:1659–1673

Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam,
The Netherlands

Legendre P, Mi X, Ren H, Ma K, Yu M, Sun I-F, He F (2009) Partitioning beta diversity in
a subtropical broad-leaved forest of China. Ecology 90:663–674

Overton J (1996) Spatial autocorrelation and dispersal in mistletoes: field and
simulation results. Vegetatio 125:83–98

Poulin R (2003) The decay of similarity with geographical distance in parasite
communities of vertebrate hosts. J Biogeogr 30:1609–1615

R Development Core Team (2011) R: a language and environment for statistical
computing. , Vienna, Austria. Available at http://www.R-project.org. Accessed
09 October 2013. ISBN 3-900051-07-0

Shurin J, Cottenie K, Hillebrand H (2009) Spatial autocorrelation and dispersal
limitation in freshwater organisms. Oecologia 159:151–159

Steinitz O, Heller J, Tsoar A, Rotem D, Kadmon R (2006) Environment, dispersal
and patterns of species similarity. J Biogeogr 33:1044–1054

Sullivan M, Davies R, Reino L, Franco A (2012) Using dispersal information to
model the species-environment relationship of spreading non-native species.
Meth Ecol Evol 3:870–879

Tingley R, Dubey S (2012) Disparity in the timing of vertebrate diversification events
between the northern and southern hemispheres. BMC Evol Biol 12:244

Tobin P, Blackburn L (2007) Long-distance dispersal of the gypsy moth (Lepidoptera:
Lymantriidae) facilitated its initial invasion of Wisconsin. Environ Entomol
37:87–93

Tognelli M, Kelt D (2004) Analysis of determinants of mammalian species richness
in South America using spatial autoregressive models. Ecography 27:427–436

Vieira C, Blmires D, Diniz-Fiho J, Bini L, Rangel TFLVB (2008) Autoregressive modelling
of species richness in the Brazilian Cerrado. Braz J Biol 68:233–240

Zhang S, Slik J, Zhang JL, Cao K (2011) Spatial patterns of wood traits in China are
controlled by phylogeny and the environment. Glob Ecol Biogeogr 20:241–250

doi:10.1186/1810-522X-52-57
Cite this article as: Chen: An autoregressive model for global vertebrate
richness rankings: long-distance dispersers may have stronger spatial
structures. Zoological Studies 2013 52:57.

http://www.r-project.org

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Global richness rankings of amphibians, birds, and mammals
	Measure of the spatial autocorrelation
	Autoregressive spatial modeling
	Model evaluation

	Results
	Patterns of spatial autocorrelations in global richness rankings of amphibians, mammals, and birds
	Long-distance dispersers can have a strong spatial structure

	Discussion
	Conclusions
	Competing interests
	Acknowledgements
	References

