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Influence of monsoon-driven hydrographic
features on thaliacean distribution in waters
around Taiwan, western North Pacific Ocean
Zhen-Heng Liao1, Hung-Yen Hsieh2,3 and Wen-Tseng Lo1*
Abstract

Background: The mesoscale distribution of thaliaceans associated with hydrographic conditions in the waters
around Taiwan was investigated during two different monsoon seasons in 2004 in order to elucidate possible
influences of hydrological conditions driven by seasonal monsoons on distributional patterns of thaliaceans.

Results: In total, 18 thaliacean species, belonging to 12 genera and 3 families, were identified in our samples.
Thalia rhomboides, Doliolum denticulatum, Doliolum nationalis, Thalia orientalis, Pyrosoma verticillatum, and Thalia
democratica were the six predominant species and contributed 93% to the total thaliacean collection by number.
Thaliacean assemblages were similar in composition between seasons, but abundances and species numbers were
higher in summer than in winter. Spatial distribution patterns of doliolids and salps clearly differed and were closely
associated with hydrographic characteristics. Doliolids were mainly found in lower-salinity and nutrient-rich shelf
and neritic waters; among them, D. denticulatum could be used as an indicator species of the China Coastal Current.
Most salp species showed higher abundances in warm oceanic waters, such as the Kuroshio Current, Kuroshio
Branch Current, and South China Sea Surface Current.

Conclusions: This study showed that the succession of water masses driven by monsoons affects seasonal and
particularly spatial distributions of abundances of the thaliacean assemblage in the area studied.
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Background
Oceanic waters surrounding Taiwan are dominated by
several water masses (Figure 1) that are affected by sea-
sonal monsoons (Jan et al. 2002, 2006). There are three
main oceanic currents in the Taiwan Strait (TS): the
China Coastal Current (CCC), South China Sea Surface
Current (SCSSC), and Kuroshio Branch Current (KBC).
These currents are strongly influenced by monsoons and
seasonally change their direction and succession. Each of
these currents plays a significant role in shaping hydro-
graphic conditions in the TS (Jan et al. 2002). On the
other hand, the warm and highly saline Kuroshio
Current (KC) (Yang et al. 1999), which originates in the
northern tropical Pacific east of the Philippines, flows
northward along waters east of Taiwan year-round.
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During the northeasterly monsoon (NEM) season
between late autumn (October) and early spring
(March), the main axis of the KC is usually close to the
east coast of Taiwan, while cold, nutrient-rich, low-
salinity CCC waters, driven by the NEM, usually flow
southward along the coast of the Chinese mainland into
the northern or even central TS (Liu et al. 2000). The
KBC, which has similar hydrological characteristics to
those of the KC, flows through the Luzon Strait and
northern South China Sea (SCS) and intrudes into the
southeastern TS. The CCC and KBC usually meet near
the central TS at the Yunchang Rise, where a thermohal-
ine front consequently develops (Jan et al. 1998). During
the southwesterly monsoon (SWM) season from late
spring (May) to early autumn (September), the main axis
of the KC generally moves away from the east coast of
Taiwan, and the KBC is replaced by the warmer SCSSC,
which flows northeastward into the southern or even
central TS. At the same time, because of the SWM, the
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Figure 1 Sampling stations in waters around Taiwan in February and August 2004. Crosses, stations with CTD data only; solid circles,
stations with both CTD and thaliacean samples; NEM, northeasterly monsoon; SWM, southwesterly monsoon.
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CCC may only reach the northern TS or sometimes dis-
appears altogether. All of these complex hydrological con-
ditions in waters around Taiwan greatly affect the
distribution patterns of marine zooplankton and other
organisms (Lo et al. 2004, 2012; Hwang and Wong 2005;
Hwang et al. 2006; Hsieh et al. 2011, 2012, 2013;
Chou et al. 2012).
Pelagic tunicates are known to play a role in transfer-

ring energy from primary producers to higher trophic
consumers in marine ecosystems (Seapy 1980; Larson
et al. 1989; Crocker et al. 1991; Paffenhöfer and Gibson
1999). They form fine mucous filter nets to trap food or-
ganisms and can ingest tiny organic particles (i.e., par-
ticulate organic matter (POM), such as phytoplankton
and remains of organisms) as their food sources from
pelagic waters (Alldredge and Madin 1982; Crocker
et al. 1991; Bone et al. 1997; Madin and Deibel 1998).
They are also preyed upon by fish, seabirds, jellyfish,
mollusks, and other animals (Seapy 1980; Larson et al.
1989), thus serving as part of the ‘biological pump’ in
marine ecosystems. Furthermore, they produce big, fast-
dropping fecal pellets, which accelerate carbon transfer
from upper to deeper waters (Fortier et al. 1994). High
abundances of thaliaceans may be a result of their
high asexual or sexual reproduction rates (Gibson and
Paffenhöfer 2002), and for doliolids, the high asexual
reproduction rate usually leads to rapid production in ner-
itic regions (Deibel 1998). Gibson and Paffenhöfer (2002)
proposed that the number and body size of gonozooids
released from asexual reproduction of Dolioletta (Det.)
gegenbauri were related to environmental conditions (e.g.,
phytoplankton concentration and temperature).
There have only been a few studies on thaliaceans

in waters adjacent to Taiwan. Tew and Lo (2005)
described seasonal changes and diel vertical migra-
tions of three thaliacean species in coastal waters of
southwestern Taiwan and proposed that the distribu-
tion patterns of these thaliaceans were related to
reproduction, food availability, and hydrography.
Zhang et al. (2003a, b) studied the distribution of
thaliacean assemblages in the eastern TS in a sub-
tropical bay off southwestern Taiwan. They found that
the abundance of thaliaceans increased with increas-
ing temperatures and phytoplankton concentrations.
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However, those studies were mostly limited to small
areas of coastal waters.
The present study is a part of the Taiwan Coopera-

tive Oceanic Fisheries Investigation (TaiCOFI) con-
ducted by the Taiwan Fisheries Research Institute,
which is the first large-scale (21 ~ 26°N, 118 ~ 123°E)
plankton and hydrographic survey carried out in
waters around Taiwan to establish a long-term
hydrographic and biological database and construct
a numerical model for fishery forecasts. In the
present study, we investigated spatial distributions of
thaliacean assemblages during the NEM and SWM
seasons in waters around Taiwan in order to eluci-
date possible influences of hydrological conditions
driven by seasonal monsoons on distributional pat-
terns of thaliaceans.
Table 1 Hydrographic variables (at 5-m depth) and average a

Species Winter

Mean ± SE RA

(individuals/1,000 m3) (%)

Thalia rhomboides 454 ± 160 43.77

Doliolum denticulatum 313 ± 96 30.15

Doliolum nationalis 0 0

Thalia orientalis 77 ± 29 7.43

Pyrosoma verticillatum 4 ± 4 0.35

Thalia democratica 37 ± 11 3.53

Thalia cicar 50 ± 16 4.80

Weelia cylindrica 4 ± 4 0.40

Salpa fusiformis 48 ± 25 4.65

Iasis zonaria 14 ± 9 1.38

Salpa younti 0 0

Cyclosalpa sewelli 0 0

Dolioletta gegenbauri 3 ± 2 0.30

Brooksia rostrata 2 ± 2 0.17

Traustedtia multitenticulata 2 ± 2 0.16

Doliolina mulleri 1 ± 1 0.08

Pegea confoederata 0 0

Cyclosalpa affinis 0 0

Unidentified old nurse 29 ± 6 2.79

Unidentified Thaliacea 1 ± 0.4 0.05

Total thaliaceans 1,037 ± 224 100

Species number 4.3 ± 0.4

Species diversity 0.9 ± 0.1

Temperature (°C) 22.74 ± 0.45

Salinity 34.24 ± 0.09

Chlorophyll a (μg/L) 0.12 ± 0.04

RA, relative abundance; OR, occurrence rate. Asterisks indicate a significant differen
and ***p < 0.001.
Methods
This survey was carried out in waters around Taiwan
during Fishery Researcher I cruises in winter (February,
NEM) and summer (August, SWM) of 2004 (Figure 1).
At each station, temperature and salinity were obtained
with a General Oceanics SeaBird CTD (SBE-911 Plus,
Bellevue, WA, USA) from the surface to a depth of
200 m (or 10 m above the bottom at stations of <200 m
in depth). Seawater samples for chlorophyll (Chl) a con-
centration measurements were collected with Go-Flo
bottles (Miami, FL, USA) at six depths (5, 25, 50, 75,
100, and 150 m), immediately filtered through Whatman
GF/F filter paper (K.K., Tokyo, Japan) onboard, and then
put in vials containing 10 ml of 90% aqueous acetone for
at least 24 h in a dark refrigerator for full extraction. In
the laboratory, sample vials were shaken and centrifuged,
bundance, RA, and OR of the Thaliacea in 2004

Summer

OR Mean ± SE RA OR

(%) (individuals/1,000 m3) (%) (%)

61.76 1,026 ± 404 32.13 82.35

97.06 634 ± 235 19.84 97.06

0 728 ± 547 22.81 14.71

61.76 207 ± 40** 6.49 76.47

2.94 232 ± 161 7.25 17.65

50.00 134 ± 37* 4.21 79.41

61.76 50 ± 12 1.57 64.71

2.94 67 ± 29* 2.09 38.24

44.12 12 ± 8 0.39 23.53

20.59 0 0 0

0 13 ± 5* 0.40 26.47

0 10 ± 4* 0.31 17.65

5.88 1 ± 1 0.04 2.94

5.88 1 ± 1 0.03 2.94

5.88 1 ± 1 0.02 2.94

5.88 1 ± 1 0.04 2.94

0 1 ± 1 0.02 2.94

0 0.1 ± 0.1 0.004 2.94

61.76 74 ± 14** 2.33 85.29

5.88 1 ± 1 0.03 11.76

- 3,193 ± 705** 100 -

5.7 ± 0.4*

1.0 ± 0.1

28.96 ± 0.17***

34.14 ± 0.04

0.06 ± 0.02

ce between seasons according to an ANOVA at *p < 0.05, **p < 0.01,
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Figure 2 Sea temperature (°C), salinity, and chlorophyll a concentration (μg/L) contours of surface water (at 5-m depth).
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winter (February) (A) and summer (August) (B) 2004. (Data from the
Ocean Data Bank of National Center for Ocean Research, Taiwan).
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and the fluorescence was measured with a fluorescence
spectrophotometer (Hitachi model F-2000, Tokyo, Japan)
before and after acidification with 10% hydrochloric acid.
The amount of Chl a was then calculated using equations
of Strickland and Parsons (1972).
Zooplankton samples were collected from 34 of the 62

hydrographic stations using an Ocean Research Institute
(ORI; Tokyo, Japan) net with a mouth diameter of 1.6 m
and a mesh size of 330 μm. A flowmeter (Hydro-Bios,
Kiel, Schleswig-Holstein, Germany) was mounted at the
center of the mouth opening to estimate the volume of
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filtered water. The net was towed vertically from 200 m
(or 10 m above the bottom at stations of <200 m in
depth) to the surface at a speed of 1 m/s. After collec-
tion, all samples were immediately preserved onboard in
5% ~ 10% borax-buffered formalin seawater. In the
laboratory, thaliaceans were identified and counted
under a dissecting microscope (Askania SLG, Rathenow,
Germany). Doliolids were identified to species level and
to two life cycle stages: gonozooids and phorozooids.
We did not use oozooid samples for this study because
oozooids are unknown for most doliolid species
(Godeaux et al. 1998). Salps were also identified to spe-
cies level and two life stages (solitary and aggregate), and
body sizes of gonozooids were measured from their buc-
cal siphon to the atrial siphon (Godeaux 1998).
Abundances of thaliaceans were expressed as the num-

ber of individuals/1,000 m3. A cluster analysis with a
normalized Euclidean distance was used to distinguish
hydrographic regions based on temperature and salinity
data collected at 5 ~ 20 m in depth at each station.
Shannon's diversity index (Shannon and Weaver 1963)
was used to calculate the species diversity of thaliaceans.
An analysis of variance (ANOVA) was used to test if
biological and hydrographic variables significantly dif-
fered between seasons (NEM vs. SWM) and locations
(oceanic vs. neritic). Multidimensional scaling (MDS)
was used to analyze seasonal and spatial variations in
the thaliacean assemblage structure. Indicator values of
thaliacean species of station groups (water masses),
based on the equation of Dufrene and Legendre (1997),
were calculated to find possible indicator species and
their preferred hydrographic conditions. Multiple regres-
sions with a forward stepwise method were used to
analyze relationships between thaliacean abundances
and hydrographic variables. Cluster dendograms of the
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Table 2 Indicator values of thaliacean species and
hydrographic characters of different station groups
(from Figure 4)

Station group/
species

Ind. Val. Hydrographic characters

(at a depth of 5 m, mean ± SE)

Winter

WG1 T 20.9 ± 0.7, S 34.0 ± 0.7, C 0.3 ± 0.1

Doliolum
denticulatum

68.49

WG2 T 24.4 ± 0.2, S 34.4 ± 0.03, C < 0.05

Thalia orientalis 96.54

Thalia cicar 66.57

Thalia democratica 65.13

Thalia rhomboides 60.40

Summer

SG1 T 28.7 ± 0.3, S 34.0 ± 0.1, C 0.07 ± 0.03

Doliolum
denticulatum

72.73

SG2 T 29.1 ± 0.1, S 34.2 ± 0.03, C < 0.05

Thalia democratica 57.24

Thalia orientalis 51.80

Ind. Val., indicator value (only those with an Ind. Val. of >50 are shown);
T, temperature (°C); S, salinity; C, chlorophyll a (μg/L).
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Figure 5 Temperature-salinity diagrams of different hydrographic sta
Comparison of the three main oceanic currents: the China Coastal Current
(SCSSC) (Chen and Huang 1996).
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Bray-Curtis similarity matrix were used to evaluate the
similarity of body-size frequency of the gonozooid stage of
Doliolum denticulatum among stations, and the distribu-
tion in abundance of each body size group was then
delineated on a map to visualize its relationship with
hydrographic conditions.

Results
Hydrographic conditions
Hydrographic features exhibited significant seasonal
changes in waters around Taiwan, with higher tempera-
tures and lower Chl a concentrations in the summer
SWM than in the winter NEM (Table 1). Hydrographic
characteristics during both monsoon seasons showed
clear northwest-southeast gradients in the TS, particu-
larly in winter, when the CCC with cold, low-salinity
water and high Chl a concentrations dominated the
northwestern part of the TS adjacent to the Chinese
coast (Figure 2). In summer, the SCSSC comprising
warm, lower-salinity waters intrudes into the southern
or central TS when the CCC retreats northward. Fur-
thermore, owing to three consecutive typhoons in the
study area during the summer sampling period of 2004,
distribution patterns of temperature and salinity became
more irregular, but the distribution pattern of Chl a
concentrations in the TS was still similar to that in
KCSCSSC

Group WG 2

CCC

linity

29 30 31 32 33 34 35 36

KCSCSSC

Group SG 2

CCC

tion groups in winter and summer 2004 (see Figure 4).
(CCC), Kuroshio Current (KC), and South China Sea Surface Current
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winter (Figure 2). These distribution patterns were also
confirmed by satellite images of sea surface temperatures
(SSTs) and SeaWiFS Chl a during our sampling periods
(Figure 3).
According to results of a cluster analysis based on

hydrographic data, two hydrographic station groups
were distinguished in each season: WG1 and WG2 in
winter and SG1 and SG2 in summer (Figure 4). In win-
ter, WG1 included 16 sampling stations (Figure 4A) in
waters of western and northwestern Taiwan that may
have been influenced by the CCC, which were character-
ized by lower temperatures and salinities and higher Chl
a concentrations than in KC and SCSSC waters (Table 2,
Figure 5). WG2 comprised 18 sampling stations located
in waters east and southwest of Taiwan in which the
KBC usually prevailed with higher temperatures and
salinities but lower Chl a concentrations. The distribu-
tion of station groups in summer was a little chaotic
(Figure 4B), but their distribution pattern could also be
separated into two station groups. SG1 mostly com-
prised stations in the TS and were mainly influenced by
the SCSSC, although some isolated stations were scat-
tered in eastern and southwestern waters of Taiwan.
SG2 comprised stations mainly located in waters east of
Taiwan dominated by the KC (Figure 5). Between the
two station groups, lower temperatures and salinities
and higher Chl a concentrations were observed in SG1
(Table 2), and variations in temperature and salinity in
both station groups in summer were less than those in
winter (Table 2).

Composition of the thaliacean assemblage
In total, 18 thaliacean species belonging to 3 orders, 3
families, and 12 genera were identified in the present
study (Table 1). Species compositions of thaliaceans
were nearly similar between seasons, but abundances
(ANOVA, F = 8.113, p < 0.01) and species numbers
(ANOVA, F = 6.400, p < 0.05) were significantly higher in
summer than in winter. During the winter NEM, nine
salpid, three doliolid, and one pyrosomatid species were
recognized, respectively constituting 69.1%, 30.5%, and
0.4% of the total catch of thaliaceans. Thalia rhomboides
and D. denticulatum were the two predominant species,
together comprising 73.9% of the total thaliacean abun-
dance (Table 1). During the summer SWM, 12 salpid, 4
doliolid, and 1 pyrosomid species were recorded, re-
spectively contributing 50.0%, 42.7%, and 7.3% to the
total thaliacean number. T. rhomboides was the most
dominant salpid species comprising 32.1% of the total
abundance, while Doliolum nationalis and D. denticula-
tum respectively constituted 22.8% and 19.8% of the
overall abundance (Table 1).
Spatial distribution patterns of abundance and species

number of thaliaceans were similar between seasons
(Figure 6). Abundances of thaliaceans were higher in
northeastern and southwestern waters of Taiwan in
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winter and in the TS and waters south of Taiwan in
summer (Figure 6A). Species numbers were always
higher in waters east and south of Taiwan than in waters
northwest of Taiwan in both seasons (Figure 6B). Com-
paring the average abundance of thaliaceans between
oceanic (≥200 m) and neritic (<200 m) waters around
Taiwan (Table 3), five species of the order Salpida, T.
rhomboides, Thalia orientalis, Thalia democratica, Salpa
fusiformis, and Salpa younti, were considered to be
oceanic species. In contrast, all species of the order
Doliolida were regarded as shallow-water species with
Table 3 Average abundances of thaliacean species in
oceanic and neritic waters around Taiwan during the
study periods

Species Oceanic Neritic

(depth ≥200 m,
individuals/1,000 m3)

(depth <200 m,
individuals/1,000 m3)

Doliolida

Doliolum
denticulatum

151 ± 27 933 ± 288**

Dolioletta
gegenbauri

0 5 ± 3*

Doliolina mulleri 0 2 ± 2*

Doliolum
nationalis

0 885 ± 662**

Salpida

Brooksia
rostrata

2 ± 2 0

Cyclosalpa
affinis

0.1 ± 0.1 0

Cyclosalpa
sewelli

7 ± 3 2 ± 2

Iasis zonaria 5 ± 3 11 ± 11

Pegea
confoederata

0 1 ± 1

Salpa fusiformis 46 ± 22 7 ± 4**

Salpa younti 11 ± 4 0**

Thalia
rhomboides

960 ± 347 426 ± 183*

Thalia orientalis 167 ± 33 107 ± 41***

Thalia cicar 44 ± 11 58 ± 19

Thalia
democratica

122 ± 32 34 ± 10***

Traustedtia
multitenticulata

2 ± 1 0

Weelia
cylindrica

26 ± 11 49 ± 33

Pyrosomatida

Pyrosoma
verticillatum

137 ± 132 90 ± 59

Asterisks indicate significant differences according to an ANOVA at *p < 0.05,
**p < 0.01, and ***p < 0.01. Oceanic stations: 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 15,
16, 17, 18, 19, 29, 30, 31, and 32. Neritic stations: 37, 38, 39, 43, 44, 45, 49, 50,
51, 53, 56, 57, 58, and 59.
higher indicator values in shelf waters off western and
northern Taiwan. Results of the MDS analysis indicated
that thaliacean assemblages showed some variations
between seasons and areas (Figure 7), particularly the
neritic assemblage, which exhibited larger variations
among stations than did the oceanic assemblage in both
seasons.

Indicator species of the Thaliacea and associated
hydrographic conditions
The indicator species (with indicator values of >50) of
thaliaceans in different water masses in both seasons are
shown in Table 2. In winter, D. denticulatum was the
only species with a higher indicator value (68.5) in
WG1, while T. orientalis, Thalia cicar, T. democratica,
and T. rhomboides showed higher values (>60.4) in
WG2. In summer, D. denticulatum exhibited higher in-
dicator values (72.7) in SG1, and two Thalia species, T.
democratica and T. orientalis, had higher values in SG2.
By analyzing indicator values of thaliaceans and hydro-
graphic characteristics of each station group, we de-
duced that D. denticulatum might prefer waters of lower
temperatures and salinities and higher Chl a concentra-
tions, while salps favor waters of higher temperatures
and salinities.
Results of the multiple regression analysis (Table 4)

showed that the abundance of D. denticulatum was posi-
tively correlated with the Chl a concentration (p < 0.05),
while abundances of T. rhomboides (p < 0.05), T. orienta-
lis (p < 0.01), and T. democratica (p < 0.001) were nega-
tively related to seawater temperature, and that of T.
orientalis was negatively correlated with Chl a concen-
trations (p < 0.05). Pyrosomid species showed no correla-
tions with any environmental variables. These results
implied that salpid and doliolid species were influenced
S-O
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Figure 7 MDS analyses of the thaliacean community in waters
around Taiwan in 2004. S, summer; W, winter; O, oceanic;
N, neritic.



Table 4 Results of a forward stepwise regression and partial correlation coefficient (R)

Species R for T R for S R for C Predictive equation

Thalia rhomboides (TR) 0.377* 0.214 −0.233 TR = 6.13 T − 42.41

Doliolum denticulatum (DD) −0.009 −0.101 0.277* DD = 3.85 C + 16.14

Doliolum nationalis 0.162 0.049 0.160 ns

Thalia orientalis (TO) 0.483** 0.167 −0.432* TO = 6.00 T − 4.98 C + 0.89

Pyrosoma verticillatum 0.218 −0.085 0.012 ns

Thalia democratica (TD) 0.526*** 0.098 −0.389 TD = 7.07 T + 24.76

Total thaliaceans (TT) 0.278** 0.042 0.090 TT = 4.28 T + 3.29

Species number (SN) 0.501** 0.222 −0.415* SN = 1.30 T − 0.90 C − 3.43

Species diversity (SD) 0.380 0.260 −0.433* SD = −0.75 C − 5.27

Relationships of abundances of the six predominant thaliacean species (with a relative abundance of 93%) and environmental variables in waters around Taiwan
in winter and summer 2004 are evaluated; *p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant; T, temperature; S, salinity; C, chlorophyll a.

Table 5 Average abundances and percentage generation
of the six predominant thaliacean species in 2004

Species Winter Summer

Mean ± SE
(individuals/
1,000 m3)

PG Mean ± SE
(individuals/
1,000 m3)

PG

Salpida

Thalia
rhomboides

S 66 ± 20 14.6 127 ± 49 12.3

A 388 ± 146 85.4 900 ± 357 87.7

Thalia
orientalis

S 19 ± 5 24.8 28 ± 9 13.5

A 58 ± 25 75.2 179 ± 34 86.5

Thalia cicar S 1 ± 7 25.7 - -

A 37 ± 11 74.3 - -

Thalia
democratica

S 20 ± 6 54.7 71 ± 17 53.1

A 17 ± 8 45.3 63 ± 25 46.9

Salpa
fusiformis

S 7 ± 5 14.2 - -

A 41 ± 20 85.8 - -

Doliolida

Doliolum
denticulatum

G 71 ± 19 22.8 119 ± 41 18.7

P 241 ± 89 77.2 515 ± 210 81.3

Doliolum
nationalis

G ns ns ns ns

P ns ns 728 ± 546 100.0

Pyrosomatida

Pyrosoma
verticillatum

Z ns ns 232 ± 161

PG, percentage generation, S, solitary zooid; A, aggregate zooid; G, gonozooid;
P, phorozooid; Z, zooid; ns, no sample; -, not dominant in this season.

Liao et al. Zoological Studies 2013, 52:49 Page 9 of 14
http://www.zoologicalstudies.com/content/52/1/49
by different hydrographic factors, which resulted in dis-
tinct distribution patterns in our study area.

Distribution patterns in generations and size fractions of
the Thaliacea
During our sampling period, D. denticulatum and D.
nationalis showed higher abundances of phorozooids,
and in summer, the latter was devoid of gonozooids; on
the other hand, most salpid species had higher percent-
ages of aggregate zooids, but T. democratica showed a
little higher abundance of solitary zooids than aggregate
zooids during both seasons (Table 5). Comparing spatial
patterns in abundances and generations of the two
predominant thaliaceans, T. rhomboides and D. denticu-
latum, in winter and summer, it can be seen that
T. rhomboides was mainly distributed in waters off
northeastern, eastern, and southwestern Taiwan, it was
scarce in waters off northeastern Taiwan in both sea-
sons, and its aggregated zooids showed higher percent-
ages at most stations, especially in southern warm
waters in summer (Figure 8A). However, D. denticula-
tum showed higher abundances in northern and western
waters of Taiwan and had higher percentages of phoro-
zooids at most stations (Figure 8B).
According to the cluster dendogram, based on the

body-size frequency of the gonozooid stage of D. denti-
culatum, three station groups could be distinguished in
each season, and each group seemed to display distinct
distribution patterns. In winter (Figure 9), station group
I (G-I), with gonozooids of body lengths of 3.0 ~
3.5 mm, contained only two stations in waters east of
Taiwan with relatively low abundances; gonozooids in
station group II (G-II) were mostly of median sizes
(2.5 ~ 3.0 mm) and were mainly distributed in waters
northwest of Taiwan, while group III (G-III) mainly
comprised gonozooids of small sizes (1.5 ~ 2.0 mm) and
was widely distributed in waters around Taiwan with
higher abundances in the northeast to southwest. In
summer (Figure 10), G-I contained only one station in
coastal waters east of Taiwan with gonozooids of larger
body sizes (3.5 ~ 4.0 mm) and low abundances, G-II
comprised gonozooids of body sizes of 2.0 ~ 2.5 mm and
with higher abundances in northwestern waters, while
G-III was mostly comprised of gonozooids of small body
sizes (1.5 ~ 2.0 mm) with higher abundances in waters
northeast and southwest of Taiwan.
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Discussion
Hydrographic environments
The seasonal monsoon system and bathymetric topog-
raphy are the two main physical parameters affecting
spatiotemporal variations in water masses and determine
through-flow transport (Jan et al. 2002, 2006). In winter,
the CCC extended south into the central TS, as evi-
denced by lower temperatures and salinities from
southeast to northwest. Meanwhile, in the southeastern
TS, a water tongue of relatively high temperature
and salinity stretched northward through the Penghu
Channel, signaling penetration of the KBC into the
southeastern TS (Figures 2 and 3). However, in winter,
this northerly extension of the KBC was largely inhibited
by the southerly moving CCC near the Penghu Channel,
which consequently reduced the transport of plankton
from SCS and KBC waters to the northern TS. On the
contrary, when the SWM prevailed, warm, lower-salinity
waters originating from the SCS were widely distributed
over the entire TS. The SCSSC replaced the KBC and
dominated summer oceanic conditions in the TS. Com-
pared to waters west of Taiwan, the hydrographic
situation in waters east of Taiwan was much simpler and
was dominated by the warm and highly saline KC
year-round. These hydrographic conditions in waters
surrounding Taiwan are consistent with previous studies
on the KC and East China Sea (ECS) (Wang and Chern
1988; Chern et al. 1990; Liu et al. 1992) and on the TS
(Jan et al. 2002, 2006).
In the present study, we also noted that lower temper-

atures and higher salinities in the western TS, especially
in waters southwest of the Penghu Islands, indicated the
formation of topographic upwelling due to the Yunchang
Rise (YR) (Figure 2). According to Jan et al. (1994), when
the KBC and SCSSC impinge on the YR, surface and
bottom waters may flow in different directions upstream
of it. The former flows over the YR and moves along the
eastern side of the TS, while the latter is obstructed by
the YR and turns northwestward along local isobaths
into the northwestern TS. However, bottom water rises
near the Penghu Islands and forms a cyclonic ring
characterized by upwelling of cold water from greater
depths to enrich the upper waters with nutrients. Our
study further confirmed this phenomenon. High levels
of nutrients in our study area were also reported by
Chung et al. (2001).

Factors affecting thaliacean distributions
Seawater temperature is an imperative factor affecting
the distribution of salps (Brandon et al. 2004). During
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the warm period in the Southern Ocean, asexual
reproduction prevails in salps, where a large number of
aggregate zooids are budded (Daponte et al. 2001;
Kawaguchi et al. 2004). In our study, most salp species
showed higher abundances in the aggregate stage than
in the solitary stage (Table 5). For example, T. rhom-
boides dominated in the aggregate stage and was mainly
distributed in waters east and southwest of Taiwan
where the KC and SCSSC respectively prevailed year-
round (Figure 8). The oligotrophic KC and SCSSC,
usually with water temperatures ranging 24°C ~ 31°C
(Figure 2), likely provided a warm environment suitable
for T. rhomboides and most other salp species to perform
massive asexual reproduction. A similar phenomenon was
also observed by Nishikawa et al. (1995) when Salpa
thompsoni became greatly abundant in nutrient-poor
oceanic waters near South Shetland Islands in summer
and by Kremer and Madin (1992) that salps were well
adapted to an oligotrophic environment.
In contrast, doliolids feed on food particles of a wide size

range with their mucous filter net. They, therefore, prefer
food-rich shelf and coastal waters where the environment
is probably more beneficial for their reproduction (Gibson
and Paffenhöfer 2002; Deibel and Paffenhöfer 2009).
Gibson and Paffenhöfer (2002) observed that the release
rate of gonozooids of Det. gegenbauri increased with suit-
able water temperature when food concentrations in-
creased from 7 to 160 μg C/L. In our study, doliolids, with
higher ratios of phorozooids, were mainly distributed in
northern and northwestern waters of Taiwan with the
usual dominance of lower-salinity and nutrient-rich CCC
and East China Sea shelf waters. Similarly, doliolids also
frequently dominated nutrient-rich shelf waters southeast
of the USA (Paffenhöfer et al. 1987). They were usually
scarce in waters east of Taiwan in our study, probably due
to their soft bodies and weak swimming abilities, not being
adapted to the higher current velocities and turbulent
waters of the KC.
Doliolids generally have lower growth rates than salps

(Deibel 1982). The occurrence of a high biomass
of doliolids results from their vigorous asexual reproduc-
tion that is influenced by various environmental condi-
tions, such as temperature (Deibel and Paffenhöfer 2009),
food, and physical actions (Gibson and Paffenhöfer 2002).
For instance, Gibson and Paffenhöfer (2002) found that in
coastal waters off the southeastern USA, phorozooids of
Det. gegenbauri showed a lower reproduction rate but pro-
duced gonozooids of large body sizes that were less nu-
merous at lower phytoplankton concentrations. However,
at higher food concentrations, its phorozooids engaged in
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asexual reproduction in large quantities within short
periods of time and produced large-size gonozooids, im-
plying that Det. gegenbauri can produce gonozooids of lar-
ger size (2.98 and 3.15 mm) under both food-rich (160 μg
C/L) and food-deprived (7 μg C/L) conditions, if food
resources for their needs occur within a suitable range.
Similar results were also observed in our study, e.g., large-
size gonozooids of D. denticulatum were mainly found
in low-salinity, nutrient-rich CCC waters northwest of
Taiwan, but relatively fewer gonozooids, sometimes of
large body sizes, were found in the highly saline and oligo-
trophic KC east of Taiwan in our study area.
Distribution patterns of the thaliacean assemblage are

also associated with their own physiological and eco-
logical traits, such as swimming ability, growth rate, re-
productive behavior (Gibson and Paffenhöfer 2002), and
feeding behavior (Huskin et al. 2003; Kawaguchi et al.
2004). In addition to their own biological characteristics,
some environmental factors, such as food sources, pred-
ators, and hydrological conditions, may directly or indir-
ectly affect distribution patterns of thaliaceans (Deibel
1982; Kawaguchi et al. 1998; Paffenhöfer and Gibson
1999). The influences of the abovementioned factors
were also evident on other gelatinous zooplankton in
waters around or adjacent to Taiwan. For instance, on
the northwestern continental shelf of the SCS, Li et al.
(2012) suggested that local coastal upwelling and surface
ocean currents driven by the SWM enhanced species
numbers and abundances of siphonophores in summer;
in contrast, the NEM forced the cold coastal current
into the study area, resulting in low species richness and
abundances in winter. López-López et al. (2013) re-
ported recurrent higher abundances of gelatinous carni-
vore zooplankton in the month following a strong
typhoon in northern Taiwan. In this study, D. denticula-
tum prevailed in shelf waters of western Taiwan in both
monsoon seasons and can be used as the indicator spe-
cies of the CCC. On the contrary, most salp species
tended to occur in warmer oceanic waters (e.g., the KC,
KBC, and SCSSC) east and southwest of Taiwan. There
were insufficient data to illustrate distribution patterns
of pyrosomids and their relationship with hydrographical
variables because they were only found at a few stations
in our study.

Conclusions
In conclusion, our results provide evidence that the
spatio-seasonal pattern of thaliaceans is closely associ-
ated with mesoscale oceanic features in waters around
Taiwan. Monsoon-driven water masses may determine
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seasonal variations in thaliacean assemblages. Distribu-
tions of abundances and size fractions of thaliaceans are
influenced by hydrographic conditions due to seasonal
succession of the CCC, KBC, and SCSSC, the availability
of food, and their own ecological preferences. The close
relationship between hydrographical factors and distri-
butions of thaliaceans offers the possibility of using cer-
tain species as indicators of water masses that would
provide a better understanding of ecosystems in the
study area. This present study has expanded our know-
ledge of thaliacean distributions in waters surrounding
Taiwan and also provides good examples of biotic re-
sponses to hydrological conditions and interactions
among monsoon-driven water masses.
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