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Abstract

Background: Assuming that locomotion has a strong influence on animals’ fitness, we hypothesized that better
locomotor performance would be associated with the most frequently utilized habitat. Laticauda colubrina,
Laticauda laticaudata, and Laticauda semifasciata have different amphibious habits and microhabitat preferences at
Orchid Island, Taiwan. We investigated the morphology and locomotor performance of the three sympatric species
of sea krait. The measurements of body size, tail area, and body shape were compared in our study. Data on
crawling and swimming speeds were gathered to investigate locomotor performance in terrestrial and aquatic
environments.

Results: We found significant differences in the locomotor performances among the three species. L. colubrina was
the most terrestrial species in habits and sprinted significantly faster than the others during terrestrial locomotion.
On the other hand, L. semifasciata was the most aquatic species, and it swam significantly faster than the other two
species. These results are consistent with our hypothesis that sea kraits move well in their respective primary
environments. With respect to the highly aquatic L. semifasciata, its laterally compressed body form, large body size,
and large area of compressed tail are considered to be beneficial to swimming in an aquatic environment.

Conclusions: More data are required to understand the superior terrestrial locomotion of L. colubrina, but this
species may benefit from its more-cylindrical body form compared to L. semifasciata and from its greater muscle
mass compared to L. laticaudata. L. laticaudata was intermediate in habits but exhibited the poorest performance in
both swimming and terrestrial locomotion. The reasons for this remain unclear.
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Background
Locomotion is an attribute which has important ecological
implications in relation to prey capture, predator avoidance,
mate searching, and reproduction. Locomotive performance
can improve animals’ foraging efficiency (Higham 2007)
and the ability to escape predation (Miles 2004; Husak
2006a; Arendt 2009). Resource acquisition can affect animals’
energy allocation between growth and reproduction
(Bonnet et al. 1998; Kubicka 2009), and predation is
also an important selective force shaping morphology,
physiology, behavior, and life-history traits in natural
populations (Steiner 2007; Hossie et al. 2010). Hence, it is
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commonly believed that animals’ fitness is enhanced with
increasing locomotor ability.
Locomotor performance benefits animals in various

ways. Garter snakes Thamnophis sirtalis fitchi that have
greater speed and endurance are more likely to survive
(Jayne and Bennett 1990). A high correlation between
locomotor performance and survival was also found in
lizards (Husak 2006b). In the collared lizard Crotaphytus
collaris, a strong correlation between a male’s sprint
speed and territory size indicates that faster males might
have better opportunities to mate (Peterson and Husak
2006). Additionally, a higher sprint speed also helps
male collared lizards in reproduction (Husak et al. 2006)
and survival (Peterson and Husak 2006).
Locomotor systems are generally designed to function

well in circumstances where they are usually employed
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(Losos 1990; Aubret and Shine 2008a). The evolutionary
transition from terrestrial to aquatic habitats caused
subsequent modifications in morphology, physiology,
and behavior, especially when strong selective pressures
are exerted by aquatic habitats. For example, aquatic
snakes that move forward by accelerating portions of the
surrounding water (Shine et al. 2003) have a laterally
compressed body form, a shorter tail, a higher tail height,
and a larger tail area (Brischoux and Shine 2011)
compared to terrestrial snakes. These character states
presumably increase the lateral surface area devoted
to thrust and thereby enhance a snake’s swimming
performance (Pattishall and Cundall 2008). In contrast,
friction is responsible for generating propulsive forces in
terrestrial locomotion. Reactive forces are formed when
lateral undulatory locomotors push against irregularities
in the substrate. Once the forces are sufficiently great to
overcome sliding frictional resistance, the animal moves
(Gans 1974). A snake’s terrestrial locomotor speed is
affected by frictional differences among substrates
(Scribner and Weatherhead 1995) and also varies with
the substrate area with which the snake’s body is in
contact (Finkler and Claussen 1999). For amphibious
species such as sea kraits, it is important to crawl
and swim well due to requirements of foraging in the
ocean and returning to land for mating, oviposition,
digestion, and skin sloughing (Heatwole 1999). However,
animals face different challenges when moving in different
media. While aquatic locomotor performance is improved
by a sea krait’s laterally flattened body shape, this body form
leads to a decrease in the substrate area contacted with the
ventral portion of the body, thus impairing terrestrial
locomotion. In addition, comparisons conducted between
aquatic and terrestrial snakes also revealed a habitat-
dependent difference in muscle structures (Jayne 1982).
Three laticaudine sea kraits are distributed in coastal

waters around Orchid Island (Lanyu in Chinese), Taiwan.
Although they occur sympatrically on reef areas during the
nighttime, subtle differences in microhabitat utilization can
still be found among them. Laticauda semifasciata can be
seen submerging in the water or retreating very close to
the water. Laticauda laticaudata retreats to reef areas not
far from the water, whereas Laticauda colubrina behaves
like a terrestrial snake and crawls away from the water
to shrubby vegetation that occurs along the coast
(Liu, unpublished data). Other studies similarly indicated
that L. colubrina is the most terrestrial of the three species,
L. semifasciata is the most aquatic, and L. laticaudata is
intermediate in amphibious habits (Bonnet et al. 2005;
Lillywhite et al. 2009).
Due to these differences in terrestrial tendencies, we

predicted that a better crawling ability and a superior
swimming performance should respectively characterize
L. colubrina and L. semifasciata. Moreover, the locomotor
performance of L. laticaudata should be intermediate
both on land and in the water. We also tested the hypoth-
esis that in these sea kraits, the extent of lateral body
compression and the surface area of the paddle-shaped
tail should be consistently linked to differences in
aquatic vs. terrestrial tendencies, such that values of body
height/width ratio and the tail surface area should rank
from high to low in L. semifasciata, L. laticaudata, and
L. colubrina.

Methods
Animal collection and housing
This study was conducted in 2008 and 2009. Sexual size
dimorphism was found in L. colubrina and L. semifasciata
(Shetty and Shine 2002; Shine et al. 2002; Cox et al. 2007),
and sexual differences in body shape have strong influ-
ences on both terrestrial (Bonnet et al. 2005) and aquatic
(Brischoux et al. 2010) locomotion. Hence, we collected
only adult male snakes for our investigation on locomotor
performance of these sea kraits.
Females were also excluded from our study to avoid

the potential effect of gravidity and due to their limited
appearance at our sites. Males were collected by hand
on Orchid Island (22°03′N, 121°32′E), which is a 45-km2

island situated 60 km off the southeastern coast of
Taiwan. All the animals collected for our study were
treated in accordance with the protocol approved by
The Animal Care and Use Committee of National Taiwan
Normal University (permit #93013). All snakes were main-
tained in damp cloth bags and were transported to National
Taiwan Normal University, Taipei within 5 days. Each
snake was individually housed in a plastic container
(length × width × height of 27 × 24 × 16 cm) filled 3 cm
deep with fresh water. The snakes were fasted and placed
in a room that was kept at a constant 25°C with a photo-
period of 12 h dark/12 h light. They were housed for
1 day before we tested their performance in locomotion.
After the testing was completed, all snakes were released
at the same site where they were collected.

Morphology
In total, 117 individuals (32 L. colubrina, 48 L. laticaudata,
and 37 L. semifasciata) were collected for the locomotor
performance tests. We recorded the snout-vent length
(SVL), tail length, and mass of each snake. The tail area
was recorded in all but 34 individuals that were used in
other projects. The lateral surface area of the tail was mea-
sured by converting the relative weight proportion of the
tail shape delineated on A4-sized paper. All measurements
were used in the correlation analyses between morphology
and locomotor performance in the three sea snake species.
Additional sea kraits (17 L. colubrina, 16 L. laticaudata,

and 16 L. semifasciata) were collected to measure the
body shape, which is more laterally compressed during
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swimming than when in a resting state. The roundness
index (body height/body width) used in previous research
(Pattishall and Cundall 2008) was adopted as a body shape
index. To standardize measurements along the body
length, we marked the trunk sequentially at one fourth,
one half, and three fourth of the SVL from the tip of the
snout with white paint. We then compared the index among
body segments and species. The laterally compressed body
form of sea kraits is more obvious when they are swimming
and when they are being caught. They continued moving
when they were caught and held in the air, and their bodies
were laterally compressed as when they were swimming.
Thus, data of body shape in a laterally compressed state was
measured immediately when they were caught and trying to
get away. The resting status of the body was only achieved
after being placed in a cage with no disturbance. In both
circumstances, we measured the body height and width
using electronic digital calipers (to a precision of 0.01 mm;
Mitutoyo CD-15 DC, Mitutoyo Ltd., Tokyo, Japan). These
measurements were taken at three segments of the body
during resting and moving states. The ratio of the roundness
index during resting and moving states was calculated as
‘ratio change index’ to investigate the extent of body shape
change between states.

Locomotor performance
An acrylic racetrack (3.0 m long, 0.5 m wide, and 0.5 m
deep) was used for the locomotion tests. Every 25 cm, a
black line was marked at the bottom of the racetrack. A
camera (30 fps, VG4C-XP-V, Chateau Technical Corp.,
Taipei, Taiwan) with a digital timer was suspended above
each line, except for the first one. In total, ten cameras
were used to record the time when a snake passed
each black line. To examine whether the grain of the
substrate affected the crawling speed, three types of
substrate (shingle, coral, and fine gravel) were used in
preliminary tests to determine the optimal substrate
for maximum crawling speeds which could be achieved
during the test. The average particle sizes of these
substrates were 66.0 (shingle), 13.0 (coral), and 2.5 mm
(fine gravel) in diameter. Even though L. laticaudata showed
no difference in crawling speeds on the various substrates,
a significantly higher speed on the fine gravel surface was
found in L. colubrina (analysis of variance (ANOVA) F2,27
= 7.02, p = 0.0035; Tukey’s test, p < 0.05) and L. semifasciata
(F2,51 = 11.73, p < 0.0001; Tukey’s test, p < 0.05). Thus, the
fine gravel was chosen as the substrate for subsequent trials
on terrestrial locomotion. To measure swimming speeds,
artificial seawater (34.74 g/kg; Coralife Scientific Grade
Marine Salt, Energy Savers Unlimited, Carson, CA, USA)
was filled inside the racetrack to a depth of 15 cm. About
one half of the snakes were first tested in aquatic trials, and
the others were first tested in terrestrial trials. Snakes were
tested in random order during the daytime, and all snakes
completed one aquatic trial and one terrestrial trial. Both
trials were done on two consecutive days with a 24-h inter-
val between trials. Each snake was released at one end of
the racetrack to begin the trial. Snakes began subsurface
swimming immediately after release in the aquatic trials,
but they were encouraged to move down the racetrack by
light taps on the tail during terrestrial trials. We stopped
the test when we found that a snake had stopped moving
or began moving in the opposite direction. In such cases,
we repeated the test after waiting at least 1 h.
Van Damme and Van Doren (1999) suggested that

relative speed (body length/s) was a better predictor of
escaping predation than was the absolute speed (m/s).
But Shine et al. (2003) also proposed that too little is
known about the relative significance of the two types of
measures in laticaudine locomotion. Thus, we included
both measures of speed in this study. The sprint and
average speeds were adopted as indices of locomotor
performance. For each snake, the sprint speed was the
fastest speed calculated in any 0.25-m interval of the
racetrack, whereas the average speed was the mean
speed measured after completion of the trial.

Data analyses
We performed a one-way ANOVA to compare body
lengths (SVLs) among the sea kraits, and a one-way ana-
lysis of covariance (ANCOVA) with SVL as the covariate
was conducted for interspecific comparisons of tail
length, tail area, and body mass. For each species of sea
krait, roundness indices measured separately in either
the resting or moving state of the three body segments
(anterior, middle, and posterior) were compared with a
one-way ANOVA. Body shape differences among the sea
kraits were separately analyzed in the resting and
moving states using a repeated-measures ANOVA with
roundness indices measured in the three body segments
(anterior, middle, and posterior) as the repeated measure
and species as the factor. Sea kraits changed their
body shape between the resting and moving states. By
dividing the roundness indices of different states
(resting state/compressed state), a ratio change index
was created to represent the extent of body shape
change between states. We ran a repeated-measures
ANOVA with ratio change indices calculated for the
three body segments as the repeated measures and
species as the factor to compare interspecific differences in
the extent of body shape changes between the resting and
moving states. Locomotor performances on land and in
water were separately compared with a one-way ANOVA
with species as the factor and speed (absolute and SVL/s)
as the dependent variable. When the ANOVA or ANCOVA
results were statistically significant, Tukey’s test was used
for post hoc pair-wise comparisons at α = 0.05. Multiple
regressions were run to assess the effects of morphological
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variables (SVL, body mass, tail length, and tail area)
on the locomotor performance. Because SVL, body
mass, tail length, and tail area were highly correlated,
we calculated regressions using residuals of the body
mass, tail length, and tail area regressed on the SVL.
All analyses were performed with JMP 7.0 (SAS Institute,
Cary, NC, USA) statistical software.

Results
Morphology
The SVLs of the three sea kraits significantly differed
from each other (ANOVA, F2,114 = 28.13, p < 0.0001;
Tukey’s test, p < 0.05; Table 1). ANCOVAs with SVL
as the covariate demonstrated a significant species
effect on tail length (F2,113 = 9.77, p < 0.0001; Table 1),
tail area (F2,113 = 157.23, p < 0.0001), and body mass
(F2,113 = 208.57, p < 0.0001) among the sea krait species.
Subsequent Tukey’s tests showed that tail lengths in
L. semifasciata and L. colubrina did not statistically
differ, but the tail of L. laticaudata was significantly shorter
than the others (p < 0.05; Table 1). The body mass and tail
area of the three species significantly differed from each
other, with the rank order from highest to lowest values
being L. semifasciata, L. colubrina, and L. laticaudata
(Tukey’s test, p < 0.05).
Data on the body roundness index of the three sea

kraits measured at the anterior, middle, and posterior
segments of their bodies are given in Table 2. In a
resting state, intraspecific comparisons revealed no
differences among body segments in the roundness
index (ANOVAs, p > 0.05). In interspecific comparisons,
the repeated-measures ANOVA revealed a significant
species effect on the body shape during a resting state
(F2,96 = 5.33, p = 0.0083). A subsequent Tukey’s test
showed that L. laticaudata had a significantly higher
roundness index than that of L. semifasciata (p < 0.05),
and L. colubrina had a median value of the index that did
not statistically differ from the others. In a moving
state, ANOVAs of the body roundness index revealed
a significant body shape difference among the three segments
in L. colubrina (F2,48 = 14.16, p < 0.0001), L. laticaudata
(F2,45 = 18.27, p < 0.0001), and L. semifasciata (F2,45 =
7.29, p = 0.001). A significantly higher roundness index
was found in the posterior segment of all the sea kraits
Table 1 Snout-vent length, body mass, tail length, and tail area

L. colubrina

Mean (SE) Range Me

Snout-vent length (cm) 79.2 (1.3) 65.5 to 94.5 (C) 82

Body mass (g) 188.3 (10.4) 103.3 to 352.5 (b) 167

Tail length (cm) 12.1 (0.2) 10.0 to 15.1 (B) 11

Tail area (cm2) 18.1 (0.7) 12.8 to 23.8 (b) 17

Different letters in parentheses indicate a significant interspecific difference in value
(p < 0.05, Tukey’s test; Table 2). An interspecific comparison
showed that the body shapes of the three sea kraits
significantly differed from each other (repeated-measures
ANOVA, F2,96 = 55.62, p < 0.0001; Tukey’s test, p < 0.05).
L. semifasciata had the highest body roundness index, and
L. colubrina had the lowest value. When the ratio change
index was used to represent the extent of the body shape
change between states, L. semifasciata was also found to
have a significantly higher extent of body shape change
from a resting to a moving state than did the others
(repeated-measures ANOVA with ratio change indices
in the three body segments as the repeated measure
and species as the factor; F2,96 = 29.35, p < 0.0001;
Tukey’s test, p < 0.05).

Locomotor performance
Separate one-way ANOVAs on locomotor performance
revealed significant interspecific differences in both the
relative sprint crawling speed (F2,114 = 8.81, p < 0.0001;
Figure 1) and relative sprint swimming speed (F2,114 =
11.20, p < 0.0001). The interspecific difference in loco-
motor performance was still significant in crawling
(ANOVA, F2,114 = 6.51, p < 0.0001; Figure 1) and swim-
ming (ANOVA, F2,114 = 23.01, p < 0.0001) when the aver-
age speed was used as the index. L. colubrina was found
to have a higher crawling speed, and L. semifasciata was
found to have a higher swimming speed; L. laticaudata
was the slowest species during both terrestrial and
aquatic trials. Subsequent multiple comparisons showed
a significant interspecific difference in the locomotor
performance among the sea kraits (p <0.05, Tukey’s test;
Figure 1). L. colubrina sprinted significantly faster than
the others. L. semifasciata had higher swimming speeds,
but they did not significantly differ from those of L.
colubrina. L. laticaudata was the slowest sea krait
during crawling and swimming.
When using the measure of absolute speed (m/s) as the

predictor, the ANOVAs demonstrated significant interspe-
cific differences in sprint crawling speed (F2,114 = 6.54,
p = 0.002; Figure 2), sprint swimming speed (F2,114 = 21.46,
p < 0.0001), average crawling speed (F2,114 = 4.79, p < 0.01),
and average swimming speed (F2,114 = 38.14, p < 0.0001).
Although absolute speeds revealed similar patterns to
relative speeds presented in the analyses, L. semifasciata
of sea kraits measured for the locomotor performance test

L. laticaudata L. semifasciata

an (SE) Range Mean (SE) Range

.5 (0.8) 65.5 to 94.0 (B) 85.5 (0.9) 79.2 to 101.5 (A)

.3 (5.6) 75.1 to 273.1 (b) 484.2 (13.4) 339.1 to 618.6 (a)

.8 (0.2) 8.1 to 18.7 (B) 13.5 (0.2) 11.6 to 16.0 (A)

.5 (0.6) 10.9 to 23.2 (b) 32.4 (0.5) 24.5 to 43.7 (a)

s of a morphological variable (Tukey’s test, α = 0.05).



Table 2 Body roundness index (body height/width) of three sea kraits measured in the anterior, middle, and posterior
regions of their bodies

Resting state Moving state

Species Number Anterior Middle Posterior Anterior Middle Posterior

L. colubrina 17 0.92 ± 0.02 (−) 0.90 ± 0.02 (−) 0.94 ± 0.03 (−) 1.14 ± 0.02 (B) 1.24 ± 0.03 (A) 1.29 ± 0.03 (A)

L. laticaudata 16 0.96 ± 0.02 (−) 0.97 ± 0.02 (−) 1.01 ± 0.03 (−) 1.23 ± 0.02 (b) 1.25 ± 0.03 (b) 1.40 ± 0.03 (a)

L. semifasciata 16 0.89 ± 0.02 (−) 0.86 ± 0.02 (−) 0.92 ± 0.03 (−) 1.38 ± 0.02 (B) 1.38 ± 0.03 (B) 1.55 ± 0.03 (A)

Data of different states are presented separately as the mean ± SE. Different letters in parentheses indicate a significant intraspecific difference in values (Tukey’s
test, α = 0.05).
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was found to have significantly higher speeds for both the
sprint swimming speed and average swimming speed than
the other species (p < 0.05, Tukey’s test).
For each species, results of the multiple regression

analyses indicated that overall morphological variables
(SVL, residuals of body mass, tail length, and tail area)
did not significantly predict locomotor performance of
the three sea kraits, but the residual tail area by itself
was identified as a significant predictor of swimming
speeds in L. colubrina (absolute sprint speed and absolute
average speed, Table 3).

Discussion
Our data demonstrated that there are interspecific differ-
ences in locomotor performance among these three sea
krait species, and these results support our principal
hypothesis. Being the most terrestrial species of the three
sea kraits, L. colubrina demonstrated the fastest sprint
speed during the terrestrial locomotion test. On the other
hand, L. semifasciata is a more highly aquatic species and
performed significantly better in the water, having the
highest sprint swimming speed. These data suggest that
Figure 1 Relative speeds of the three laticaudine sea kraits in
different media. Data are shown separately for the sprinting and
average speeds. Bars labeled with the same letter do not
significantly differ (Tukey’s test, α = 0.05).
sea kraits have adaptive locomotor capabilities that
have evolved to improve performance in their respective
principal habitat.
Morphological characters can greatly influence the

locomotor capabilities of animals. In snakes, including
sea kraits and other sea snake species, swimming
speed increases with an increasing size of individuals
(Jayne 1985, Shine and Shetty 2001, Shine et al. 2003).
Studies of common garter snakes also revealed that a
higher maximum crawling speed is associated with
an increasing body mass (Heckrotte 1967). However,
our results revealed that only the residual tail area of
L. colubrina was correlated with the absolute sprint
and absolute average speeds in the multiple regression
models. Sea kraits investigated by Shine et al. (2003) had
large ranges of body sizes (35 to 131 cm in L. colubrina
and 41 to 115 cm in L. laticaudata). The adult sea kraits
collected in our study had comparatively narrower
ranges of body sizes (65.5 to 94.5 cm in L. colubrina,
65.5 to 94.0 cm in L. laticaudata, and 79.2 to 101.5 cm in
L. semifasciata). Within the rather narrow ranges of body
sizes studied, and maybe also because the sample size was
Figure 2 Absolute speeds of the three laticaudine sea kraits in
different media. Data are shown separately for the sprinting and
average speeds. Bars labeled with the same letter do not
significantly differ (Tukey’s test, α = 0.05).



Table 3 Estimates for the associations between morphological variables and sea krait locomotor performance in the
regression models

Absolute sprint swimming a Absolute average swimming b

b ± SE t p b ± SE t p

Snout-vent length 0.00 ± 0.01 0.04 NS 0.00 ± 0.01 −0.12 NS

Residual tail length −0.11 ± 0.08 −1.38 NS −0.13 ± 0.07 −1.73 NS

Residual weight 0.00 ± 0.00 −1.54 NS 0.00 ± 0.00 −1.57 NS

Residual tail area 0.07 ± 0.03 2.19 0.04 0.07 ± 0.03 2.33 0.03
a n = 22, R2 = 0.35, R2adj = 0.195, F4,17 = 2.26, p = 0.11. b n = 22, R2 = 0.26, R2adj = 0.08, F4,17 = 1.46, p = 0.26.
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not big enough, significant correlations between morpho-
logical variables and locomotor performance could not be
detected in our study. Swimming speeds (0.35 to 2.04
SVL/s and 23 to 141 cm/s) and crawling speeds (0.02 to
0.63 SVL/s and 2 to 46 cm/s) in other species of sea
snakes were reported by Shine et al. (2003); measurements
of swimming speeds that we obtained for sea kraits were
lower but still within those ranges. Terrestrial speeds
that we measured were generally slower than the
speeds (1.29 SVL/s and 31.23 to 91.7 cm/s) measured
in various terrestrial species of snakes such as Notechis
scutatus (Aubret et al. 2007) and T. s. fitchi (Jayne and
Bennett 1989, 1990), but comparisons are dependent on
the mode of locomotion. Crawling speeds of sea kraits
were nearly an order of magnitude lower than maximum
speeds (5 m/s) recorded for rapidly moving terrestrial
snakes such as mambas (Goldman and Hu 2010).
Morphological modifications are frequently found in

organisms that adapt to specific environments. With
respect to aquatic environments, both a paddle-shaped
tail and a laterally compressed body form can produce
greater propulsive forces compared to what a cylindrical
body offers in undulatory swimming animals (Lighthill
1975; Gillis 1996; Aubret and Shine 2008b; Brischoux
and Shine 2011; Sanders et al. 2012). The positive correl-
ation between swimming speed and the extent of lateral
body compression in Nerodia sipedon suggests that
the temporarily flattened body promotes swimming
performance in that species (Pattishall and Cundall 2008).
A flattened paddle-like tail also appears to provide a major
reason why sea kraits swim more rapidly than do their
terrestrial counterparts (Shine and Shetty 2001). In our
study, the two sea krait species exhibited obvious lateral
compression of their posterior body when moving. In
addition, L. semifasciata had the most compressed body
form when moving, and it also had a significantly larger
tail area than did the other sea kraits. These features
characteristic of L. semifasciata appear to explain its
superior swimming capability compared to the other
two species.
Although we expected L. laticaudata to have a median

locomotor performance in crawling and swimming due
to its intermediate level of terrestriality among the three
sea kraits, the slow locomotion of L. laticaudata in
both media did not conform to our hypothesis. An inter-
mediate morphology might not always produce an inter-
mediate performance. On the contrary, it might produce
the worst performance. For example, metamorphosing
tadpoles are most vulnerable to predators during the
developmental transition (with legs and a tail) due to their
worst escape performance (Wassersug and Sperry 1977;
Crump 1984). Similarly, in horned beetles, intermediate
morphologies are rare or absent from natural populations
due to their inferior competition for mating (Madewell
and Moczek 2006). When an intermediate morphology
produces an inferior performance and inferior fitness, it
may result in disruptive selection, a well-known selection
mode in nature.
In addition, animals may have different tactics in

response to predation and foraging; thus, L. laticaudata
may have other behavioral adaptations to cope with
ecological requirements of its microhabitat. Moreover,
aquatic emydid turtle species have higher speeds in both
aquatic and terrestrial locomotion, whereas terrestrial
and semiterrestrial species tend to have slower speeds
but greater endurance in both aquatic and terrestrial
environments (Stephens and Wiens 2008). The slowest
locomotor speed of L. laticaudata when both crawling
and swimming may be explained from a perspective
of the trade-off between locomotor ability and other
functional attributes.

Conclusions
Differences in locomotor performance between L.
semifasciata and L. colubrina support the prediction
of their adaptation to particular microhabitats and can be
explained as a consequence of sea kraits utilizing micro-
habitats where they experience a better ‘fit’. The excellent
swimming capability of L. semifasciata may be explained by
its highly lateral compressed body form during a moving
state. However, the observation that L. laticaudata moves
most slowly among the three species of sea kraits remains
enigmatic and invites further detailed research concerning
behavior and habitat utilization by these species.
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