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Abstract

Background: We encountered the opportunity to study proteochemically a brackish water invertebrate animal,
Mytilopsis leucophaeata, belonging to the bivalves which stem from the second half of the Cambrian Period (about
510 million years ago). This way, we were able to compare it with the vertebrate animal, the frilled shark
(Chlamydoselachus anguineus) that stems from a much later period of geologic time (Permian: 245–286 MYA).

Results: The mussel contains a well-adapted system of protein synthesis on the ER, protein folding on the ER,
protein trafficking via COPI or clathrin-coated vesicles from endoplasmic reticulum (ER) to Golgi and plasmalemma,
an equally well-developed system of actin filaments that with myosin forms the transport system for vesicular
proteins and tubulin, which is also involved in ATP-driven vesicular protein transport via microtubules or transport
of chromosomes in mitosis and meiosis. A few of the systems that we could not detect in M. leucophaeata in
comparison with C. anguineus are the synaptic vesicle cycle components as synaptobrevin, cellubrevin (v-snare) and
synaptosomal associated protein 25-A (t-snare), although one component: Ras-related protein (O-Rab1) could be
involved in synaptic vesicle traffic. Another component that we did not find in M. leucophaeata was Rab11 that is
involved in the tubulovesicular recycling process of H+/K+-ATPase in C. anguineus. We have not been able to trace
the H+/K+-ATPase of M. leucophaeata, but Na+/K+-ATPase was present. Furthermore, we have studied the increase
of percent protein expression between 1,070 MYA (the generation of the Amoeba Dictyostelium discoideum) and
present (the generation of the mammal Sus scrofa = wild boar). In this time span, three proteomic uprises did occur:
600 to 500 MYA, 47.5 to 4.75 MYA, and 1.4 to 0 MYA. The first uprise covers the generation of bivalves, the second
covers gold fish, chicken, brine shrimp, house mouse, rabbit, Japanese medaka and Rattus norvegicus, and the third
covers cow, chimpanzee, Homo sapiens, dog, goat, Puccinia graminis and wild boar. We hypothesise that the latter
two uprises are related to geological and climate changes and their compensation in protein function expression.

Conclusions: The proteomic and evolutionary data demonstrate that M. leucophaeata is a highly educatioanal
animal to study.
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Background
Mytilopsis leucophaeata or the brackish water mussel,
belonging to the Dreissenidae or bivalve mussels, origi-
nated from Europe more than 60 million years ago
(Paleocene, Verween et al. 2010). Subsequently, it disap-
peared to Central America and returned to Europe
(harbour of Antwerp) in 1835. Since then, it is a stable
inhabitant of European brackish waters.
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In the period of September 2009 to September 2010,
two of my colleagues studied the influence of a number
of parameters (depth, temperature, salinity and illumin-
ation) on size, growth condition, diet and attachment via
development of byssal threads (Grutters and Verhofstad
2010). Bivalves have survived a long history from about
510 million years ago to present. This means that it has
been adapted to geologically and climate-changing
conditions, which might be reflected in the evolution of
their proteome. For this reason, the present study was
started in order to see whether the presence of certain
proteins might unveil certain metabolic systems in this
aquatic animal. Almost simultaneously, an article from
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Figure 1 Absorption spectrum of SDS-solubelised F1 fraction
from M. leucophaeata from 325–750 nm. Data points are
indicated by black spots that have been line connected.
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Riva et al. (2012) did so in relation to the effect of a pol-
lutant (triclosan) on the metabolism of Dreissena poly-
morpha with emphasis on gills. In the same year, Fields
et al. (2012) and Tomanek et al. (2012) published a study
on the effect of temperature and hyposalinity on protein
expression in the gills of the Mytilidae Mytilus gallopro-
vincialis and Mytilus trossulus. In addition, we were inter-
ested in comparing amino acid sequences of our mussel
with animals stemming from later periods of life in order
to cheque the phylogenetic developments that had taken
place meanwhile.

Methods
Forty individuals of the brackish water mussel, caught
from a branch of the North Sea Channel to Amsterdam
harbour, were taken by scalpel knives and tweezers from
their shells, yielding a total wet weight of 1.8 g, sufficient
for further analysis. The body parts were taken up in 5 ml
triethanolamine HCl, pH 7.0 in 25% glycerol in the pres-
ence of 0.5 mM phenylmethylsulfonyl fluoride (PMSF) to
prevent autolysis (Schuurmans Stekhoven et al. 2003).
Further procedures, such as Potter-Elvehjem homogenisa-
tion; fractionated centrifugation to fractions F1, F2 and F3;
delipidation of fractions prior to electrophoresis; electro-
phoretic separation of proteins in the fractions; staining
and destaining of the gels; determination of the apparent
molecular weights of the protein bands on gel; excision of
the protein bands; transport to the mass spectrometric
analysis laboratory in Leicester; as well as the mass
spectrometric analysis itself, is given in full detail in our
previous publication (Schuurmans Stekhoven et al. 2010).
Information as to the cellular localisation and function

of the analysed proteins stem from handbooks like
Biochemistry of Hubert Stryer, Google (Scholar), Pubmed.
com, BLAST and UniProtKB/Swiss-Prot Protein Knowl-
edgebase and literature referred to therein. The absorption
spectrum of the brownish coloured F1 fraction (325 to
750 nm) was made with a Zeiss M4QIII spectrophotom-
eter at 20- to 50-nm intervals. A 100 μl of the F1 fraction
was dissolved in 1 ml 2% SDS, subsequently centrifuged
for 5 min at 5,000 rpm in a table top centrifuge, and the
supernatant scanned.

Results
Homogenisation and fractional centrifugation
Potter-Elvehjem homogenisation of the mussels required
very harsh and frequent pottering, yielding a brownish
homogenate. Subsequent centrifugation at 1,200, 9,000,
and 100,000 g yielded the F1 to F3 fractions. Total pro-
tein (mg) of the fractions amounted to 78.3 for F1, 7.03
for F2 and 6.2 for F3, hence ratio F1:F2; F3 = 12.6:1.13:1.0.
This ratio brought about association with the kidney
(21.5:11.2:1.0) and colon (19.4:3.9:1.0) of the frilled shark
Chlamydoselachus anguineus (Schuurmans Stekhoven et al.
2012) in which particular proteins (L-plastin, moesin, fila-
min A and α-actinin) are serving as additional construct
in linking filaments (microtubules) to the plasma mem-
brane. However, in the mussel case, in particular in rela-
tion to the brown colour of F1, and less so of F2, we had
to think more in terms of byssal threads, the biopolymers
by which mussels attach themselves to their substrate like
rocks or even ship walls. The brown colour is based on an
aqueous solution of pheomelanin (Napolitano et al. 2008)
of which the almost exponential absorption curve (down
to 325 nm) fits to our curve of M. leucophaeata F1
(Figure 1). Byssal threads apparently are high MW bio-
polymers as F1 did not demonstrate any entrance of pro-
tein into the gel. This started only in the lightly brown F2
and came to full expression by the light yellow F3, which
demonstrated proteins in the apparent molecular weight
range of 14.1 to 240 kDa (Tables 1, 2, 3 and 4). The tables
are subdivided into prokaryotic and eucaryotic ribosomal
subunits (Table 1), proteins from the ER, Golgi network
and plasma membrane (Table 2), proteins of the cytoskel-
eton and muscle (Table 3) and cellular vacuoles, vaults,
nuclei and mitochondria (Table 4). From all these proteins,
the prokaryotic or eucaryotic origin is mentioned as well
as the function and cellular localisation as could be
found in literature, including data banks. All proteins
are accompanied by their accession numbers from
[UniProtKB/SwissProt] between square brackets. Confu-
sion between capital O and the number zero is excluded
since capital O is only present at the first position and
number zero in any position from 2 to 6 of the accession
series. Translation of the accession data to protein easily
occurs by using the programme PubMed (www.ncbi.nlm.
nih.gov/pubmed) by choosing the term protein.
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Table 1 Ribosomal composition of the F3 fraction (14.1 to 240 kDa) of M. leucophaeata in the prokaryotic and
eucaryotic range

Ribosomal subunit Pro-/eucaryote Function Localisation

30S-S1 [Q9HZ71] Pseudomonas aeruginosa PAO1 Protein synthesis Protoplasma

30S-S2 [C3K5E6] Pseudomonas fluorescens SBW25 Idem Idem

30S-S3 [Q3K5Z4] Pseudomonas fluorescens PfO-1 Idem Idem

30S-S4 [Q3K611] Pseudomonas fluorescens PfO-1 Idem Idem

30S-S5 [C3K2V9] Pseudomonas fluorescens SBW25 Idem Idem

30S-S6 [A4XPZ7] Pseudomonas mendocina ymp Idem Idem

30S-S7 [C3K2Y0] Pseudomonas fluorescens SBW25 Idem Idem

30S-S7 [A1AGM8] Escherichia coli APEC O1 Idem Idem

30S-S8 [A4VHP4] Pseudomonas stutzeri A1501 Idem Idem

30S-S9 [C3K6E2] Pseudomonas fluorescens SBW25 Idem Idem

30S-S10 [A4VHM9] Pseudomonas stutzeri A1501 Idem Idem

30S-S11 [A4VHQ3] Pseudomonas stutzeri A1501 Idem Idem

30S-S13 [C3K2V4] Pseudomonas fluorescens SBW25 Idem Idem

30S-S14 [Q48D49] Pseudomonas syringae pv. phaseolicola 1448A Idem Idem

50S-L1 [C3K246] Pseudomonas fluorescens SBW25 Idem Idem

50S-L1 [Q889Y1] Pseudomonas syringae pv. tomato str. DC3000 Idem Idem

50S-L2 [C3K2X3] Pseudomonas fluorescens SBW25 Idem Idem

50S-L3 [C3K2X6] Pseudomonas fluorescens SBW25 Idem Idem

50S-L4 [C3K2X5] Pseudomonas fluorescens SBW25 Idem Idem

50S-L5 [C3K2W4] Pseudomonas fluorescens SBW25 Idem Idem

50S-L6 [B1JAJ7] Pseudomonas putida W619 Idem Idem

50S-L9 [C3KE70] Pseudomonas fluorescens SBW25 Idem Idem

50S-L9 [A1AJA7] Escherichia coli APEC O1 Idem Idem

50S-L10 [C3K2Y5] Pseudomonas fluorescens SBW25 Idem Idem

50S-L11 [C3K2Y7] Pseudomonas fluorescens SBW25 Idem Idem

50S-L13 [C3K6E1] Pseudomonas fluorescens SBW25 Idem Idem

50S-L14 [A4VHP0] Pseudomonas stutzeri A1501 Idem Idem

50S-L15 [C3K2V7] Pseudomonas fluorescens SBW25 Idem Idem

50S-L16 [C3K2W9] Pseudomonas fluorescens SBW25 Idem Idem

50S-L17 [A4VHQ6] Pseudomonas stutzeri A1501 Idem Idem

50S-L18 [C3K2W0] Pseudomonas fluorescens SBW25 Idem Idem

50S-L19 [C3K1G8] Pseudomonas fluorescens SBW25 Idem Idem

50S-L22 [A4XZ85] Pseudomonas mendocina ymp Idem Idem

50S-L24 [C3K2W5] Pseudomonas fluorescens SBW25 Idem Idem

50S-L25 [Q3K6W3] Pseudomonas fluorescens Pf 0-1 Idem Idem

40S-SA [A3RLT6] Pinctada fucata (pearl oyster) Protein synthesis ER

40S-SA [P38981] Urechis caupo (spoon worm) Assembly and/or stabilisation
of the 40S ribosomal subunit

Localisation in adhesion
complexes (Willett et al. 2010)

40S-S2 [O18789] Bos taurus (cattle) Protein synthesis ER

40S-S3 [P23396] Homo sapiens (human) Idem Idem

40S-S3a [A7S3J7] Nematostella vectensis
(starlet sea anemone)

Idem Idem

40S-S4 [Q4GXU6] Carabus granulatus (beetle) Idem Idem

40S-S5 [P46782] Homo sapiens (human) Idem Idem
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Table 1 Ribosomal composition of the F3 fraction (14.1 to 240 kDa) of M. leucophaeata in the prokaryotic and
eucaryotic range (Continued)

40S-S6 [Q90YR8] Ictalurus punctatus (channel catfish) Idem Idem

40S-S7 [A6H769] Bos taurus (cow) rRNA maturation Together with NEK6
(serine/threonine kinase)
in centrosome (microtubule
organising centre, MTOC)

40S-S9 [A6QLG5] Bos taurus (cow) Protein synthesis ER

40S-S13 [P49393] Xenopus tropicalis (western clawed frog) Idem Idem

40S-S14 [P14130] Drosophila melanogaster (fruit fly) Idem Idem

40S-S16 [P14131] Mus musculus (house mouse) Idem Idem

40S-S17 [A5PK63] Bos taurus (cattle) Idem Idem

40S-S18 [A5JST6] Capra hircus (goat) Idem Idem

40S-S18 [Q8IT98] Argopecten irradians (bay scallop) Idem Idem

40S-S19 [Q94613] Mya arenaria (soft-shell clam) Idem Idem

40S-S24 [O42387] Takifugu rubripes (tiger puffer) Idem Idem

40S-S26 [P27085] Octopus vulgaris Idem Idem

40S-S27-like [P24051] Rattus norvegicus (Norway rat) Idem Idem

60S-L4 [P50878] Rattus norvegicus (Norway rat) Idem Idem

60S-L4-B [P02385] Xenopus laevis (African clawed frog) Idem Idem

60S-L5 [P09895] Rattus norvegicus (Norway rat) Idem Idem

60S-L5 [O76190] Bombyx mori (silk worm) Idem Idem

60S-L7a [Q90YW2] Ictalurus punctatus (channel catfish) Idem Idem

60S L7c[O60143] Schizosaccharomyces pombe 972 h- Idem Idem

60S-L8 [P41569] Aedes albopictus (Asian tiger mosquito) Idem Idem

60S-L12 [E2RR58] Canis lupus familiaris (dog) Idem Idem

60S-L16a [P26784] Saccharomyces cerevisiae S288c (baker's yeast) Idem Idem

60S-L17 [A0NGY0] Anopheles gambiae (African malaria mosquito) Idem Idem

60S-L23a [P62750] Homo sapiens (human) Idem Idem

60S-L26 [P12749] Rattus norvegicus (Norway rat) Idem Idem

With names of the animals to whom the proteins are related + function and cellular localisation of these proteins.
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Table 1 shows that 52% of the ribosomal subunits is of
bacterial origin with a decreasing order in percentage for
Pseudomonas fluorescens (32.8%), Pseudomonas stutzeri
(7.5%), Pseudomonas mendocina (3%), Pseudomonas syr-
ingae (3%), Escherichia coli (3%), Pseudomonas putida
(1.5%) and Pseudomonas aeruginosa (1.5%). The other
half of the components is occupied by eucaryotes, ran-
ging from pearl oyster to Norway rat. Possible causes
and impacts of the bacterial contamination will be han-
dled under ‘Discussion’ section.
Outside Table 1, only very few bacterial proteins have

been identified, except peptidoglycan-associated lipopro-
tein in the plasma membrane of P. putida (Table 2),
outer membrane porin F from P. fluorescens (Table 2)
and 2,3-bisphosphoglycerate-dependent phosphoglycer-
ate mutase from Rhodospirillum centenum SW (Table 2).
The latter photosynthetic bacterium is housing in mar-
ine and brackish water and so can be easily caught by
the mussel valves. Still another intruder in the list of
proteomics is ribulose bisphosphate carboxylase from
Agrostis stolonifera (creeping bent grass) as this reaction
takes place in chloroplasts. The habitat of creeping bent
grass is on wetlands with tolerance to flooding (Garry Oak
Ecosystems Recovery team: www.goert.ca/documents/A.
stolonifera.pdf) or inundation of riparian zones which
may have brought the plants in contact with the mussels.
Major intracellular activities, presented in Table 2, are

protein folding on endoplasmic reticulum (ER) (endoplas-
min, peptidyl-prolyl cis-trans isomerase C = cyclophilin
C), assembly of multimeric protein complexes inside the
ER (heat-shock 70 kDa protein cognate 3, 78 kDa glucose-
regulated protein) and protein translocon formation
across the ER (dolichyl-diphosphooligosaccharide protein
glycosyltransferase). In addition, we found a number of
transport processes, such as cargo transport from trans-
Golgi to plasma membrane (guanine nucleotide-binding

http://www.goert.ca/documents/A.stolonifera.pdf
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Table 2 Proteins from ER, Golgi network and plasma membrane

Protein Pro-/Eucaryote Function Localisation

Endoplasmin [O18750] Oryctolagus
cuniculus (rabbit)

Ca2+-binding protein, possibly involved in
protein folding (Rowling et al. 1994)

ER

Guanine nucleotide-binding
protein subunit β [Q5GIS3]

Pinctada fucata
(Japanese pearl
oyster)

Cargo transport from trans-Golgi network to
plasma membrane

Golgi network and plasmalemma
(Irannejad and Wedegaertner 2010)

AP-1 complex, subunit
β-1 [O35643]

Mus musculus
(mouse)

Subunit of adaptor protein complex-1,
involved in protein sorting, mediating the
recruitment of clathrin to the membrane
and recognition of sorting signals within the
cytoplasmic tails of transmembrane cargo
molecules

Trans-Golgi network and/or clathrin-coated
vesicles (UniProt KB/Swiss- Prot:O35643.2, cf.
Robinson and Bonifacino 2001)

Clathrin heavy chain 1 [P11442] Rattus norvegicus Involved in cargo sorting (cf. adaptor protein
complex-1 of Mus musculus)

Clathrin-coated vesicles at the plasma
membrane or trans-Golgi network

α-Amylase [P04745] Homo sapiens
(human)

Formation of maltose, maltotriose and
α-dextrin from starch

In oyster (Crassostrea gigas) preferentially in
digestive tract (Huvet et al. 2003), RER, Golgi,
cisternae, condensing vacuoles, and
secretory granules (Geuze et al. 1979)

Glyceraldehyde-3-phosphate
dehydrogenase 2 [Q9ESV6]

Rattus norvegicus Conversion of glyceraldehyde-3P to
1,3-bisphosphoglycerate; + Rab2 and
protein kinase Ci driven tubulovesicular
recycling of proteins from the Golgi to the
ER (Tisdale et al. 2009)

Vesicular tubular clusters

Transitional endoplasmic
reticulum ATPase (TERA)
[P03974]

Sus scrofa (wild
boar)

Involved in fragmentation of Golgi stacks
during mitosis and reassembly after mitosis;
further is TERA involved in the formation of
tER (transitional ER) (UniProt KB/Swiss-Prot
information)

Golgi and ER

Guanine nucleotide-binding
protein G(o), subunit α [O15976]

Mizuhopecten
yessoensis
(Yesso scallop)

Major neural signalling GTPase. Reacts on
food deprivation (Hofler and Koelle 2011)

Idem G(q), subunit α [P38411] Lymnaea stagnalis
(great pond snail)

Guanine nucleotide-binding
protein subunit β-2-like 1, Rack1
= receptor for activated c
kinase-1 [Q93134]

Biomphalaria
glabrata (blood fluke
planorb = gastropod)

Involved in integrin signalling at adhesions,
e.g. in a complex with kindlin-3

Plasmalemma (Feng et al. 2012)

Peptidyl-prolyl cis-trans isomer-
ase C (cyclophilin C) [Q08E11]

Bos taurus (cow) Cyclophilin is a protein folding catalyst ER (Wang and Heitman 2005)

Actin, cytoplasmic 2 (from
fibroblastic and epithelial cells)
[A2BDB0]

Xenopus laevis
(African clawed frog)

Probably involved in contractile ring
formation (Dugina et al. 2009)

Colocalisation with myosin 2a in stress
fibres and with VASP (vasodilator-stimulated
phosphoprotein) in lamellipodia and focal
adhesions (Dugina et al. 2009)

ADP-ribosylation factor 1 (Arf 1)
[P36579]

Schizosacharomyces
pombe 972 h-

Protein trafficking via COPI or clathrin-coated
vesicles from ER to Golgi and plasmalemma

Cis/trans-Golgi and plasmalemma
(Chavrier and Goud 1999; D’Souza-Schorey
and Chavrier 2006)

Peptidoglycan-associated
lipoprotein [P0A138]

Pseudomonas
putida KT2440

Presence in bivalves may be due to ingestion
by the host (Wood 2011)

Cell outer membrane

Sarcoplasmic/endoplasmic
reticulum calcium ATPase 3
[Q9YGL9]

Gallus gallus
(chicken)

Involved in muscle contraction Localisation is in the name

Outer membrane porin F
[P37726]

Pseudomonas
fluorescens

Stabilisation of plasmalemma (multipass
membrane protein)

Cell outer membrane (cf. VDAC in C.
anguineus, Schuurmans Stekhoven et al.
2012)

Ribulose bisphosphate
carboxylase large chain
[A1EA16]

Agrostis stolonifera
(creeping bent
grass)

Ribulose 1,5-bisphosphate + CO2 + H2O→ 2
3-P-glycerate + 2H+, and 3-P-glycerate +
2-P-glycolate→ ribulose 1,5-bisP + O2

Reactions take place in chloroplasts;
presence in mollusks indicates
contamination by plants

Glycogen phosphorylase from
liver [P06737]

Homo sapiens
(human)

Glycogen (n) + Pi↔glucose-1P + glycogen(n-1) Microsomal fraction (ER or glycogen particles)
(Tata 1964, Margolis et al. 1979)
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Table 2 Proteins from ER, Golgi network and plasma membrane (Continued)

Heat shock 70 kDa protein
[P08106]

Gallus gallus
(chicken)

Conservation of protein shape and anti-stress
protectant (De Maio 1999)

Cytosol, plasma membrane and endosomes +
lysosomes (Nylandsted et al. 2004)

Heat shock 70 kDa protein
cognate 3 [P29844]

Drosophila
melanogaster (fruit fly)

Probably plays a role in facilitating the
assembly of multimeric protein complexes
inside the ER

ER (for additional locations and
actions see above)

78 kDa glucose-regulated
protein [Q16956]

Aplysia californica
(California sea hare
= mollusc)

Belongs to the heat shock protein 70 family
with function as above

ER

Dolichyl-diphosphooligosaccharide-
protein glycosyltransferase subunit
STT3A [P46977]

Homo sapiens
(human)

Transfer of a high mannose oligosaccharide to
Asn-X-Ser/Thr in nascent polypeptide chains.
The complex associates with Sec61 at the
channel forming translocon complex for pro-
tein translocation across the ER

ER (expressed at high levels in the
placenta, liver, muscle, pancreas; low in
the brain, lung, and kidney)

Calcium transporting ATPase
[P22700]

Drosophila
melanogaster (fruit fly)

Reversible Ca2+ transport Via ER and plasmalemma

Trypsin [P00761] Sus scrofa (wild boar) Serine protease In digestive tract (synthesised in pancreas),
localised in plasmalemma (Takeuchi et al.
2000)

Na+/K+-ATPase, α-subunit
[P05025]

Torpedo californica
(Pacific electric ray)

3Na+/2 K+ exchange Plasmalemma

Gelsolin-like protein 1 [Q7JQD3] Lumbricus terrestris
(common earth
worm)

Regulator of actin filament assembly and
disassembly

Plasma and intracellular membranes,
including ER, cortical vesicles and
mitochondria, plus short actin filaments
adhering to the plasma membrane (Hartwig
et al. 1989) renal brush border membranes

Malate dehydrogenase
cytoplasmic [Q6PAB3]

Xenopus laevis
(African clawed frog)

Oxidation of malate to oxaloacetate; confers
selectivity of the nucleic acid-conducting
channel in renal brush border membranes
(Hanss et al. 2002)

Renal brush border membranes

Guanine nucleotide- binding
protein subunit β-1 [P17343]

Caenorhabditis
elegans

Involved in Gαβγ activation of phospholipase
c activity in a cellular signalling process
(Yan et al. 2007)

Localisation not disclosed

Ras-related protein O-Rab1
[P22125]

Discopyge ommata
(ocellated electric ray)

Probably involved in vesicular traffic O-Rab1 was found largely in the synaptic
vesicle fraction (Ngsee et al. 1991)

Enolase [O02654] Loligo pealei (longfin
inshore squid)

Conversion of 2-phosphoglycerate ↔
phosphenolpyruvate + H2O

Cytoplasm and plasma membrane of
synaptosomes (Ueta et al. 2004)

2,3-bisphosphoglycerate-
dependent phosphoglycerate
mutase [B6IYD3]

Rhodospirillum
centenum SW

Catalyses the interconversion of
2-phosphoglycerate and 3-phosphoglycerate

Ras-related protein Rap-1b
[A5A6J7]

Pan troglodytes
(chimpanzee)

Ca2+ ATPase effector
(Lacabaratz-Porret et al. 1998)

Plasmalemma (Marridonneau-Parini and de
Gunzburg 1992; Mollinedo et al. 1993)
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protein), protein sorting at trans-Golgi network and re-
cruitment of clathrin to the membrane (AP-1 complex,
clathrin heavy chain 1), protein trafficking via COPI or
clathrin-coated vesicles from ER to Golgi and plasma-
lemma (ADP-ribosilation factor 1 =Arf 1), tubulovesicular
recycling of protein from Golgi→ ER (glyceraldehyde-3-
phosphate dehydrogenase 2) and synaptic vesicle traffic (O-
Rab1). Further, a few constructional processes are involved
like fragmentation and reassembly of Golgi stacks during
and after mitosis + formation of tER (transitional endoplas-
mic reticulum ATPase), contractile ring formation (actin,
cytoplasmic 2) and regulation of actin filament assembly +
disassembly (gelsolin-like protein 1). Subsequently, we rec-
ord a number of cellular signalling components like neural
signalling GTPase (guanine nucleotide-binding protein G
(o) or G(q), subunit α), integrin signalling at adhesions
(Rack 1) and Gαβγ activation of phospholipase c in a cellu-
lar signalling process (guanine nucleotide-binding pro-
tein subunit β-1). Another constructional component is
heat-shock 70 kDa protein, yielding conservation of
protein shape and protection against stress. In addition,
we noticed a number of metabolic enzymes (α-amylase,
glycogen phosphorylase, trypsin, enolase) and cation-
activated enzymes (sarcoplasmic/endoplasmic reticulum
calcium ATPase as modulated by Rap-1b, calcium-
transporting ATPase, Na+/K+-ATPase) and the selectivity
conferring protein in renal brush border nucleic acid con-
ducting channel (cytoplasmic malate dehydrogenase).
The contribution of cellular signalling components ap-

pears to be modest in number but has been encountered



Table 3 Proteins of cytoskeleton and muscle

Protein Eucaryote Function Localisation

Cytoplasmic actin [Q93129] Branchiostoma Belcheri
(Belcher's lancelet)

Transport track for myosin + support of cell
stability (Pollard and Cooper 2009)

Cytoskeleton

Actin, cytoplasmic 1
(β-actin) [P79818]

Oryzias latipes (Japanese
medaka)

Idem Idem

Actin [O16808] Maietiola destructor (Hessian
fly or barley midge)

Cell support + providing trafficking routes
for myosin in signal transduction (Pollard
and Cooper)

cytoskeleton, microfilaments

Actin, cytoskeletal 1A
[P53472]

Strongylocentrotus purpuratus
(purple sea urchin)

Idem Idem

Actin, non-muscle 6.2
[P17126]

Hydra vulgaris (fresh water
polyp)

Idem Idem

Actin-3 [P53457] Diphyllobothrium dentricum
(flatworm)

Idem in metazoan muscle cells actin forms
a scaffold in which myosin generates force
to support muscle contraction

Idem

Actin-3 [P41113] Podocoryne carnea (jellyfish) As for cytoplasmic actin Idem

Actin-18 [P07828] Dictyostelium discoideum
(amoeba)

Idem Idem

Actin [O17320] Crassostrea gigas (Pacific oyster) Idem Idem

Actin [P50138] Puccinia graminis(mould) Idem Idem

Actin, clone 205 [P18600] Artemia sp. (crustacean) Idem Idem

Plastin-1 [P19179] Gallus gallus (chicken) Actin bundling protein Cytoskeleton

Spectrin α-chain, non-
erythrocytic 1 [P07751]

Gallus gallus Playing an important role in membrane
organisation

Cytoplasm, cytoskeleton and
cell cortex

Spectrin β-chain [Q00963] Drosophila melanogaster
(fruit fly)

Spectrin links the actin cytoskeleton to the
plasma membrane, thus forming a flexible
scaffold in the cell cortex (Djinovic-Carugo
et al. 2002)

Plasmalemma + cytoskeleton

Heat shock cognate protein
HSP90-β [Q04619]

Gallus gallus (chicken) Early embryonic development, germ cell
maturation, cytoskeletal stabilisation,
cellular transformation, signal transduction,
long-term cell adaptation (Sreedhar et al.
2004)

Cytoplasm + cytoskeleton
(microtubules and actin filaments,
Cambiazo et al. 1999)

Radixin [P26043] Mus musculus (mouse) Participates in signal transduction and
regulates cell migration and intercellular
adhesion via Rac 1 (Valderrama et al. 2012)

Linking plasmalemma to actin
filaments

Ubiquitin [Q86WD4] Encephalitozoon cuniculi
(protozoan)

Involved in the ubiquitin proteasome
pathway (Hegde 2010)

Plasmalemma and cytoskeleton
(microtubules) (Murti et al. 1988,
Hicke and Dunn 2003)

T-complex protein 1 subunit
α [P50157]

Ambystoma mexicanum
(axolotl, salamander)

TCP-1 is chaperonin, involved in protein
folding, e.g. of actin and tubulin
(Souès et al. 2003; Yam et al. 2008)

Nucleus, cytoskeleton (microtubule
organising centre) and cytoplasm
(Souès et al. 2003)

Tubulin β-chain [P11833] Paracentrotus lividus
(sea urchin)

Mitosis, intracellular vesicle transport
(www.buzzle.com/articles/microtubules-
function. html)

Part of cytoskeleton: microtubules

Tubulin β-2 chain [P52275] Caenorhabditis elegans Part of transport track for ATP-driven
vesicle movement or chromosomes in
mitosis and meiosis

Cytoskeleton: microtubules

Tubulin α-1A chain [A5A6J1] Pan troglodytes
(chimpanzee)

Involved in supporting the cell shape
and transport of vesicles

Idem

Tubulin α-3 chain [P05214] Mus musculus (house mouse) cf. Tubulin β-chains Idem

Myosin-9 [P35579] Homo sapiens (human) Cytokinesis: vesicle transport via actin
filaments, cell shape, secretion and capping

Cytoskeleton, cell cortex together
with actin filaments at lamellipodia
and at the leading edge of migrating cells
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Table 3 Proteins of cytoskeleton and muscle (Continued)

Elongation factor 1α [P02993] Artemia salina (brine shrimp) Promoting the GTP-dependent binding of
aminoacyl-tRNA to the A-site of ribosomes
during protein biosynthesis

Cytoskeleton (actin filaments)
(Liu et al. 1996)

Eucaryotic initiation factor
4A-I [A5A6N4]

Pan troglodytes
(chimpanzee)

ATP-dependent RNA helicase, involved in
mRNA binding to the ribosome

Cytoskeleton (Ziegler et al. 2012)

Myosin-11 [P10587] Gallus gallus (chicken) Involved in contraction Smooth muscle

Myosin catalytic light chain
LC-1 [P05945]

Todarus pacificus (Japanese
flying squid = cephalopod)

Is dependent on Ca2+ binding for muscle
contraction; in molluscan muscle Ca2+

regulation is associated with myosin rather
than with actin

Mantle muscle

Myosin essential adductor
muscle light chain [P07290]

Mizuhopecten yessoensis
(Yesso scallop, bivalve)

Idem Idem

Paramyosin [O96064] Mytilus galloprovincialis
(Mediterranean mussel)

Attachment to the substrate Mytilus anterior byssus retractor
paramyosin (thick filaments at the
myofibrils)

Adductor muscle actin
(precursor) [Q26065]

Placopecten magellanicus
(sea scallop)

Involved in muscle contraction Location is in the name

Actin, muscle (precursor)
[P12431]

Strongylocentrotus purpuratus
(purple sea urchin)

Is involved in muscle contraction Idem

Tropomyosin [Q9GZ71] Haliotis diversicolor (variously
coloured abalone)

In association with the troponin complex
plays a central role in the Ca2+-dependent
regulation of muscle contraction

Idem

α-Actinin, sarcomeric
[P18091]

Drosophila melanogaster
(fruit fly)

F-actin cross-linking protein, anchoring
actin to a variety of intracellular structures.
By allowing insertion of thick filaments
(myosin) the thin filaments (actin) are led
to contraction (Stryer 1995a)

Actin, larval muscle [P02574] Drosophila melanogaster
(fruit fly)

Actin, together with myosin, is involved in
muscle contraction

Myosin heavy chain, striated
muscle [P24733]

Argopecten irradians
(baby scallop)

Involved in muscle contraction (Nyitray
et al. 1991)
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before in a proteomic analysis of Mytilus galloprovincia-
lis and Mytilus trossulus: three to four signalling compo-
nents in a total of 47 to 61 proteins, i.e. 6.4% to 6.5%
(Tomanek and Zuzow 2010).
The cytoskeletal and muscle components (Table 3)

with their numbers between parentheses can be sum-
marised as follows: actin non-muscle (11), cytoskeleton
(microfilaments) = transport track for myosin; linkers of
actin to plasma membrane: plastin, radixin, spectrin α
and β chains (4); myosin-9, involved in vesicle transport
via actin filaments (1); tubulin α and β chains (microtu-
bules, involved in ATP-driven vesicle transport or trans-
port of chromosomes in mitosis and meiosis) (4), myosin
muscle, involved in contraction: myosin-11 (smooth
muscle) (1), myosin LC-1 + heavy chain + adductor muscle
light chain (3), paramyosin (byssus retractor muscle) (1),
adductor muscle actin (precursor)→ contraction (1),
actin, muscle precursor, tropomyosin, α-actinin, actin
larval muscle (4).
Additional cytoskeletal organised components are: the

chaperonin TCP-1, heat-shock cognate protein HSP90-β
(with a plurality of functions), ubiquitin (involved in prote-
olysis), elongation factor 1α (involved in protein synthesis)
and eucaryotic initiation factor 4A-I (involved in mRNA
binding to the ribosome).
After corrections for bacterial and plant contamina-

tions in Tables 1 and 2, we come to a total of M. leuco-
phaeata-related analyses of 112. The analyses, related to
the cytoskeletal and muscle components (1st paragraph
of Table 3) amount to 30, i.e. 26.8% of all analyses. Simi-
lar results have been scored by Tomanek and Zuzow
(2010) for M. trossulus and M. galloprovincialis: 16.4%
and 25.5%, respectively. In a later study (Fields et al.
2012), they even scored 39.4% and 52.8%, respectively.
These numbers underline the importance for these water-
bound animals of a sturdy built body with solid protection
against predators. Intracellular stability by the cytoskeleton
via linking of actin filaments to the cell membrane, pres-
ence of adductor muscles for closure of the shell halves
provide additional support for the above ideas, and of
course, the presence of paramyosin is essential for binding
of the animal to the substrate, including stones and ship
walls that bring them to the harbours.
In this last part of our analyses (Table 4), we find only

transport vesicles (V-type H+-ATPase, major vault pro-
tein); histones H2A, H2AV, H2B, H3 and H4; proteasome



Table 4 Proteins from cellular vacuoles, ribonucleoprotein particles (vaults), nuclei and mitochondria

Protein Eucaryote Function Localisation

V-type proton ATPase catalytic
subunit A [P314400]

Manduca sexta
(tobacco horn worm)

Involved in cellular trafficking, exocytosis and
endocytosis, and interaction with the cytoskeleton
(Marshansky and Futai 2008)

Cellular vacuoles

Major vault protein [Q5EAJ7] Strongylocentrotus purpuratus
(purple sea urchin)

Signal pathway regulation and immune defence
(Berger et al. 2009)

Ribonucleoprotein particles
(41 × 41 × 71.5 nm) or vaults

Histone H2A.V [P02272] Gallus gallus (chicken) Histones play a central role in transcription regulation,
DNA repair, DNA replication and chromosomal stability

Part of nucleosome core (nuclei)

Histone H2A [P02268] Sepia officinalis
(common cuttlefish)

See above and below See above and below

Histone H2B, gonadal
[P02284]

Patella granatina
(sand paper limpet)

See above; further, histones and histone fragments
circulate via transporters through the cytoplasm and
so may be transferred to the plasma membrane
(Schuurmans Stekhoven et al. 2004) from where they
execute their anti-microbial activity (Seo et al. 2011)

Nuclei, cytoplasm, and
plasmalemma

Histone H3 [P02299] Drosophila melanogaster
(fruit fly)

See above See over

Histone H4 [P35059] Acropora formosa
(stony corals)

See above See over

Proteasome subunit α
type-2 [Q73672]

Carassius auratus
(gold fish)

Cleavage of peptide bonds with very broad specificity Cytoplasm and nucleus

Proteasome subunit α
type-5-A [O81149]

Arabidopsis thaliana
(thale cress)

Brake down of damaged or redundant proteins Cytosol and nucleus

Proteasome subunit α
type-7 [O13268]

Gallus gallus (chicken) ATP dependent cleavage of peptide bonds with
broad specificity

Cytoplasm and nucleus

14-3-3 protein ε [P92177] Drosophila melanogaster
(fruit fly)

Multifunctional: regulation of enzymatic activity,
regulation of subcellular localisation, inhibition of
protein-protein or protein-DNA interaction, protection
against dephosphorylation or proteolytic degradation,
stabilisation of multiprotein complexes
(Obsil and Obsilova 2011)

Plasmalemma, mitochondrion,
nucleus

ATP synthase, subunit α
[Q9XXK1]

Caenorhabditis elegans
(round worm)

ATP synthesis Mitochondrion

ATP synthase, subunit
β precursor [Q5ZLC5]

Gallus gallus (chicken) ATP synthesis Mitochondrion

Succinate dehydrogenase
[Q28ED0]

Xenopus tropicalis
(Western clawed frog)

Transfer of electrons to coenzyme Q Mitochondrion

ADP/ATP carrier protein 3
[O49447]

Arabidopsis thaliana
(thale cress)

Exchange of ADP and ATP across the mitochondrial
inner membrane

Idem

Probable malate
dehydrogenase 3 [Q54VM2]

Dictyostelium discoideum
(amoeba)

Oxidation of malate to oxaloacetate Cytoplasm and mitochondria
(Danis and Farkas 2009; Gietl 1992)

Phosphoenolpyruvate
carboxykinase [Q05893]

Ascaris suum
(pig roundworm)

Conversion of oxaloacetate to phosphoenolpyruvate
and vice versa

Mitochondria (Stryer 1995b)
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subunit α type-2, −5A and −7; the 14-3-3 protein ε; ATP
synthase subunit α- + β-precursor; the citric acid cycle en-
zymes succinate dehydrogenase; probable malate dehydro-
genase 3; and phosphoenolopyruvate carboxykinase that is
responsible for the conversion of oxaloacetate to phospho-
enolpyruvate in the gluconeogenesis pathway (Stryer
1995b); and the mitochondrial ADP/ATP exchanger.
This gives a fair picture of what is going on in the sub-

cellular compartments indicated, but some of the ani-
mals (or plants) of comparison (second column) require
some criticism with regard to their comparability as will
be brought forward in the discussion of Tables 3 and 4.
As mentioned in the ‘Introduction’ section, we were
also interested in the protein chemical developments
that had taken place in the mussel's long history. For
that reason, we have registered the generation time for
all vertebrates and invertebrates that had provided se-
quences that led to the identification of proteins that have
been presented in Tables 1, 2, 3 and 4. Proteins that could
be considered as intestinal contaminants: bacterial pro-
teins, but also a single plant, living in flooded wetlands,
have been omitted. Figure 2A,B provides the graphical re-
sult of MYA from 1,100 to zero vs. the sum of the verte-
brate + invertebrate contribution. It can be seen that the



Figure 2 A + B. Graphical expression of pro- and eucaryotes from which proteins were found in the mussel's proteome. The x-axis
indicates the time of generation in MYA (million years ago), and the y-axis indicates the accumulated expression in percent of total (100%). Point
for point has been connected graphically for the period from 1,070 to 6.5 MYA in part A and from 6.5 to 0 MYA in part B. A complete survey of
the data is shown in Table 5.
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graph curves upward from 600 to 500 MYA, thereby cov-
ering the generation of bivalves. From 320 to 50 MYA, the
line is linear, covering the insect Drosophila melanogaster
(321 MYA) teleosts Takifugu rubripes and goldfish (70 to
48 MYA). Thereupon follows a second uprise until 4.75
MYA in which period Birds (Phasianidae), Decapoda (brine
shrimp), Muridae (rat and house mouse), rabbit and the
Japanese medaka participate. After this period, there is
some levelling off, but is followed by a third uprise, lasting
from 1.4 to 0 MYA (Figure 2B). Animals and fungi, in-
volved in this period, are: cow (5), chimpanzee (3), Homo
sapiens (7), dog (1), goat (1), stemrust (1) and wild boar (2)
(Table 5). From the total of 20 items, 10 (50%) belong to
Table 1 and are part of ribosomes that are involved in the
protein synthesis machinery. The only cow that was miss-
ing in Table 1 can be found in Table 2 as a provider of
cyclophilin C, a protein folding catalyst on the ER. Chim-
panzee can be found in Table 2 at Ras-related protein Rap-
1b and in Table 3 at tubulin α-1 A chain and eucaryotic
initiation factor 4A-I. Rap-1b is a cellular signalling com-
ponent in neuronal cells (Sahyoun et al. 1991) and lympho-
cytes (Awasthi et al. 2010). Tubulin α-1 A chain is part of
the cytoskeleton (microtubules), which supports the cell
shape and serves as transport track for vesicles. Eucaryotic
initiation factor 4A-I is involved in binding of the messen-
ger RNA to the ribosome. H. sapiens (human) is for about
half categorised under the ribosomes at Table 1. Further,
humans can be found in Table 2 at α-amylase, glycogen
phosphorylase, and dolichyl-diphosphooligosaccharide pro-
tein glycosyltransferase and in Table 3 at myosin-9. Func-
tions are: provision of glucose from its polymers, protein
transport across the ER and transport of vesicles along
actin filaments. The only dog is related to protein synthesis
(Table 1); stemrust (Puccinia graminis) is also related to
the cytoskeletal actin (Table 3) and wild boar to transitional
ER ATPase (TERA) and the serine protease trypsin
(Table 2). The first is involved in breakdown and repair of
Golgi stacks during and after mitosis, respectively, plus
formation of the transitional ER. The second is involved in
proteolysis.
Summarising all processes involved in the third proteo-

chemical uprise (covering the Pleistocene and Holocene)
shows a composition of protein synthesis, breakdown,
folding and transportation across the ER. In addition,
binding of messenger RNA to the ribosome, cellular sig-
nalling, microtubular vesicle transport, breakdown and
repair of Golgi stacks during and after mitosis and for-
mation of the transitional ER are also involved. Glucose
supply is provided by α-amylase and glycogen phos-
phorylase; in the latter case yielding glucose-1P. All
these processes are essential for survival of the animal,
and during its evolution, it may have been necessary to
adapt to the changing environmental conditions.
In addition, we liked to analyse also the second proteo-

chemical uprise (48 to 4.75 MYA, corresponding with half
Eocene to second half of Pliocene). Animals belonging to
this time range are chicken (9), brine shrimp (2), house
mouse (4), rabbit (1), Japanese medaka (1), and Rattus
norvegicus (6), with the number of recorded protein
components between parentheses. Summation yields a
number of 23, slightly more than the third uprise with
20 components, but taking an appreciably longer time
span: 43 vs. 1.4 million years.
Processes involved in this second period of development

of the mussel are: transcription regulation, DNA repair
and replication + chromosome stabilisation (chicken his-
tone H2A. V: 1 item), protein synthesis at the ER by ribo-
somes from Muridae (Rattus and Mus musculus: 5 items),
binding of aminoacyl-tRNA to the ribosomes in protein
synthesis (elongation factor 1α, brine shrimp: 1 item), pro-
tein folding at the ER (endoplasmin, rabbit: 1 item), cargo
sorting at the plasma membrane and trans-Golgi network



Table 5 Geologic time table of animal, plants, amoebae and fungi's contribution to the proteomics of M. leucophaeata

Component with proteins Time of generation (MYA) Contribution
(%)

Sum
(%)

Amoeba (Dictyosteliidae): actin 18; probable malate dehydrogenase. 1070 (Wegener Parfrey et al. 2011) 1.8 1.8

Encephalitozoon cuniculi (protozoon parasite): ubiquitin. 1000 (Hedges 2002) 0.9 2.7

Starlet sea anemone (polyp): ribosomal subunit 40S-S3a. 655 (Wegener Parfrey et al. 2011) 0.9 3.6

Fission yeast (S. pombe): ribosomal subunit 60S-L7c; ADP-ribosylation
factor 1 (Arf1).

600 (Wegener Parfrey et al. 2011) 1.8 5.4

Lancelet & worms: ribosomal subunit 40S-SA; cytoplasmic actin; actin 3;
gelsolin-like protein 1; guanine nucleotide-binding protein; tubulin
β-2 chain; ATP synthase, subunit α; phosphoenolpyruvate carboxykinase.

551 to 505 (Bagley 2013) 7.1 12.5

Bivalves: ribosomal subunit 40S-SA; ribosomal subunit 40S-S18; ribosomal
subunit 40S-S19; guanine nucleotide-binding protein, subunit β; guanine
nucleotide-binding protein G(o), subunit α; actin; myosin essential adductor
muscle light chain; paramyosin; adductor muscle actin (precursor);
myosin heavy chain.

approximately 510 (Kansas Geological Survey
2008)

8.9 21.4

Hydrozoa (Hydra vulgaris; Podocoryne carnea): actin, non-muscle; actin 3. approximately 505 (Cartwright et al. 2007) 1.8 23.2

Gastropoda: Lymnaea stagnalis: guanine nucleotide-binding protein G(q),
subunit α; 2005) Biomphalaria glabrata; guanine nucleotide-binding protein,
subunit β-2-like, Rack 1; Aplysia californica: 78 kDa glucose-regulated protein;
Haliotis diversicolor: tropomyosin; Patella granatina: histone H2B, gonadal.

500 (Kansas Geological Survey 2005) 4.5 27.7

Cephalopoda: ribosomal subunit 40S-S26; enolase; myosin catalytic light
chain LC-1; histone H2A.

500 to 440 ([PPT] Life and Geologic Time) 3.6 31.3

Echinodermata (Strongylocentrotus purpuratus): actin, cytoskeletal 1A; actin,
muscle (precursor); major vault protein.

approximately 450 (Smith 1984) 2.7 34.0

Insects (Arthropoda, Hexopoda): ribosomal subunit 40S-S4; ribosomal subunit
60S-L5; ribosomal subunit 60S-L8; ribosomal subunit 60S-L17; actin; V-type
proton ATPase catalytic subunit A.

400 (Grimaldi and Engel 2005) 5.4 39.4

Fruit fly (Drosophila melanogaster): ribosomal subunit 40S-S14; heat-shock
70 kDa protein cognate 3; Ca2+ transporting ATPase; spectrin β-chain;
α-actinin, sarcomeric; actin, larval muscle; histone H3; 14-3-3 protein ε.

321 (Wegener Parfrey et al. 2011) 7.1 46.5

Fungi (Saccharomyces cerevisiae): ribosomal subunit 60S-L16a. 309 (Wegener Parfrey et al. 2011) 0.9 47.4

Amphibians (Xenopus tropicalis, Xenopus laevis): ribosomal subunit 40S-S13;
ribosomal subunit 60S-L4b; actin, cytoplasmic 2; malate dehydrogenase,
cytoplasmic; succinate dehydrogenase.

250 (Zhang et al. 2005a, b) 4.5 51.9

(Anthozoa, stony corals): histone H4. 240 (Waggoner 2000) 0.9 52.8

Elasmobranchii (rays): Na+/K+-ATPase; Ras-related protein O-Rab1. 190 (prehistoric sharks - megalodon, fossil teeth,
shark attacks) (Pre-Historic Sharks)

1.8 54.6

Amphibians (salamander): T-complex protein 1, subunit α. 139 (Zhang et al. 2005a) 0.9 55.5

Teleosts (channel catfish): ribosomal subunit 40S-S6; ribosomal subunit
60S-L7a.

160 to 110 (Volff 2005) 1.8 57.3

Plantae (cruciferae, thale cress): proteasome subunit α type-5-A; ADP/ATP
carrier protein 3.

127 (Wegener Parfrey et al. 2011) 1.8 59.1

Teleosts (Takifugu rubripes): ribosomal subunit 40S-S24. 80 to 60 (Volff 2005) 0.9 60.0

Goldfish: proteasome subunit α type-2. 49 to 46 (Wang et al. 2007) 0.9 60.9

Birds (chicken, Galliformes, Phasianidae): sarcoplasmic/endoplasmic
reticulum ATPase 3; heat-shock 70 kDa protein; plastin-1; spectrin α chain,
non-erythrocytic 1; heat-shock cognate protein HSP90-β; myosin-11; histone
H2A.V; proteasome subunit α type-7; ATP synthase, subunit β precursor.

58 to 37 (Mlikovský 1989) 8.0 68.9

Decapoda (brine shrimp): actin, clone 205; elongation factor 1α. 40 (Baxeranis et al. 2006) 1.8 70.7

Mammals (house mouse): ribosomal subunit 40S-S16; AP-1 complex,
subunit β-1; radixin; tubulin α-3 chain.

6.5 (Veyrunes et al. 2006) 3.6 74.3

Rabbit: endoplasmin. 6.5 (Branco et al. 2000) 0.9 75.2

Teleosts (Japanese medaka); actin, cytoplasmic 1 (β-actin). 6.0 to 5.4 (Takehana et al. 2003) 0.9 76.1
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Table 5 Geologic time table of animal, plants, amoebae and fungi's contribution to the proteomics of M. leucophaeata
(Continued)

Rattus norvegicus: ribosomal subunit 40S-S27-like; ribosomal subunit 60S-L4;
ribosomal subunit 60S-L5; ribosomal subunit 60S-L26; clathrin heavy chain 1;
glyceraldehyde-3-phosphate dehydrogenase 2.

6 to 3.5 (Furano and Usdin 1995;
Verneau et al. 1998)

5.4 81.5

Cow: ribosomal subunit 40S-S2; ribosomal subunit 40S-S7; ribosomal
subunit 40S-S9; ribosomal subunit 40S-S17; peptidyl-prolyl cis-trans isomerase
C (cyclophilin C).

1.4 (Mac Hugh et al. 1997) 4.5 86.0

Chimpanzee: Ras-related protein Rap-1b; tubulin-1A chain; eucaryotic
initiation factor 4A-I.

0.9 to 0.86 (Won and Hey 2005) 2.7 88.7

Homo sapiens: ribosomal subunit 40S-S3; ribosomal subunit 40S-S5;
ribosomal subunit 60S-L23a; α-amylase; glycogen phosphorylase;
dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit
STT3A; myosin-9.

0.2 to 015 (Reid and Hetherington 2010) 6.3 95.0

Dog (Canis lupus familiaris): ribosomal subunit 60S-L12. 0.032 (Germonpré et al. 2009) 0.9 95.9

Goat (Capra hircus): ribosomal subunit 40S-S18. 0.006 to 0.007 (www.ansi.okstate.edu/breeds/
goats/)

0.9 96.8

Fungi (Puccinia graminis: stemrust): actin. 0.0033 (Kislev 1982) 0.9 97.7

Wild boar: transitional endoplasmic reticulum ATPase (TERA); trypsin. 0.005 to 0 (Hardjasasmita 1987) 1.8 99.5

Time is expressed in MYA (million years ago), and contribution in percent of total (112 items), excluding bacterial contamination and vegetable contribution
from wetlands.
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(clathrin heavy chain 1, R. norvegicus: 1 item, and AP-1
complex, subunit β-1, M. musculus: 1 item), also including
endocytosis.
Besides protein synthesis, folding and sorting, there is

also the recycling from Golgi to ER (glyceraldehyde-3
phosphate dehydrogenase 2, R. norvegicus: 1 item). Not
only protein synthesis is involved, but also protein cleav-
age (proteasome subunit α type-7, chicken: 1 item). Pro-
tein is transcellularly transported via phosphorylation/
dephosphorylation of myosin on the cytoskeletal actin
tracks. Components of this system are provided by brine
shrimp (actin, clone 205: 1 item) and Japanese medaka
(cytoplasmic actin: 1 item). Intracellular stability is given
by linking of actin filaments to each other (plastin-1,
chicken: 1 item) or to the plasma membrane (spectrin α
chain, chicken: 1 item, and radixin, house mouse: 1 item).
Intracellular vesicle transport is provided by tubulin α-3
chain, which is also involved in mitosis (house mouse: 1
item). Heat-shock proteins: 70 kDa and cognate protein
HSP 90-β are involved in conservation of protein shape
(anti-stress protectant) and cytoskeletal stabilisation +
signal transduction (chicken: 2 items). Last, but not least,
muscle contraction for closing and opening the valves is
effected by sarcoplasmic/endoplasmic reticulum calcium
ATPase 3 and myosin-11 (chicken: 2 items). Not to forget
is ATP synthase (chicken: 1 item), which will make trans-
portation and muscle contraction, besides many other
processes, possible via its formation of ATP.
Comparison of the processes, represented by the

proteins of the second and third uprise, shows similar-
ities and differences. For instance: protein synthesis via
ribosomes at the ER counts for 50% in uprise 3, but
only for half as much (26%) in uprise 2. Uprise 2 covers
transcription regulation, DNA repair and replication +
chromosome stabilisation (1 item), whereas uprise 3
does not. Protein folding at ER (1 item) occurs in both
periods, but cargo sorting at the plasma membrane
and trans-Golgi network (2 items) is only in period 2.
The same holds for recycling from Golgi→ ER (1
item), whereas protein transport across the ER (1 item)
belongs only to period 3. On the other hand, protein
cleavage (either by proteasome subunit α type-7 or
trypsin) occurs in both periods. The same holds true
for actin tracks (2 and 1 item, respectively), but not for
actin linkers (3 in period 2 only). Both periods contain
vesicle transport (1 and 2 items in periods 2 and 3, respect-
ively). Further activities that relate only to period 2 are pro-
tein shape conservation + cytoskeletal stabilisation + signal
transduction by heat-shock proteins (2 items). Activities
that are related to closing and opening the valves, plus
the enzyme that this facilitates (ATP synthase) (3 items),
only occur in the second uprise, but cellular signalling
by Rab-1b and enzymes involved in the hydrolysis of
polysaccharides are confined to uprise 3 (4 items).

Discussion
Table 1 showed an abundance of 52% in bacterial riboso-
mal subunits. Although the presence of bacteria in the
intestine of a eucaryote is a common phenomenon, the
capacity of the present bacteria to break down and
thereby detoxicate organic pollutants raises the possibil-
ity that these bacteria have been added on purpose to
the canal inhabited by the mussel. The following detoxify-
ing properties have been ascribed to some of the indicated
strains: P. fluorescens is beneficial for plants in terms
of suppressing pathogens, aiding nutrient absorption

http://www.ansi.okstate.edu/breeds/goats/
http://www.ansi.okstate.edu/breeds/goats/
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and degrading environmental pollutants (www.buzzle.
com/articles/pseudomonas-fluorescens.html). P. putida is
a versatile environmental isolate that is capable of growth
on several aromatic hydrocarbons, including benzene,
toluene, ethylbenzene and p-cymene. Its broad substrate
toluene dioxygenase has been widely utilised in biocata-
lytic synthesis of chiral chemicals, as well as in the me-
tabolism and detoxification of trichloroethylene (TCE).
P. putida F1 is known to be chemotactic to aromatic hy-
drocarbons and chlorinated aliphatic compounds and
has the potential for use in biomediation applications
(genome.jgi-psf.org/psepu/psepu.home.html) (site of DOE
Joint Genome Institute, University of California). On the
other hand, the strain W619 that showed up in our ana-
lyses is more competent with regard to heavy metal resis-
tances and beneficial effects on plants (Wu et al. 2011).
P. mendocina DSWY0601 and ymp extrude a polyhy-

droxybutyrate (PHB) depolymerase that can degrade
PHB plastic (Yan et al. 2012). P. stutzeri strain A1501 is
equally beneficial to plants by denitrification of NO3

−,
converting it to N2 and fixation of N2→ 2 NH3. Subse-
quently, NH4

+ is coupled to α-ketoglutarate under forma-
tion of glutamate (Stryer 1995c; Lalucat et al. 2006).
In contrast to the above positive descriptions, the list of

bacteria also contains some negatively acting contributors:
P. aeruginosa, P. syringae and E. coli. P. aeruginosa, des-
pite its positive contribution in oil degradation in the
presence of glycerol or the biosurfactant rhamnolipid
(Zhang et al. 2005b), also excretes toxins that are dele-
terious for the pulmonary system (Roy-Burman et al.
2001). P. syringae is a plant-pathogenic bacterium, in-
fecting bean to tomato, causing bacterial speck to bac-
terial cancer (P. syringae Genome Resources home page:
Pseudomonas-Plant Interaction (PPI) from Cornell
University: Department of Plant Pathology: www.
pseudomonas-syringae.org). E. coli APEC01 is a dele-
terious avian pathogenic bacterium causing epidemic
colibacillosis in the poultry industry (Kabir 2010).
Some data of similarity with C. anguineus (Schuurmans

Stekhoven et al. 2012) are: synaptic vesicle traffic (Ngsee
et al. 1991) and enolase in the plasma membrane of syn-
aptosomes (Ueta et al. 2004). The first reminded us of the
neurotransmitter cycle that we found in the brain of C.
anguineus via its modulator α-synuclein and v- and t-
snares VAMP1/2 and SNAP-25 + syntaxin 1. However,
although bivalves contain a nervous system (Encyclopaedia
Brittanica: www.brittannica.com/EBchecked/topic/67293/
bivalve/35745/The-shell), we have not been able to find
the abovementioned v- or t-snares for bivalves. In partial
contrast to this are the results obtained for M. galloprovin-
cialis (Venier et al. 2009) in which results for three t-snares
in the Mediterranean mussel have been obtained via tran-
scribed sequences: SNAP-25A [Accession No. Q5TZ66],
SNAP-type protein [Accession No. Q25391] and SNAP-47
[Accession No. Q0P4A7]. Yet, v-snares have not been
detected either in this case. Presence of enolase in the
plasma membrane appears to have an endangering
effect via its complex formation with plasminogen that
by subsequent activation to plasmin can break down the
extracellular matrix and so can allow invasion of patho-
gens, viruses and metastatic cancer cells (Liu and Shih
2007; Díaz-Ramos et al. 2012). Normally, plasmin is
used to dissolve fibrin blood clots but upon generation
on the cell surface might cause the above effects. How-
ever, in our analyses, neither plasminogen nor plasmin
(MW 81 and 75.4 kDa, Barlow et al. 1969) or plasmino-
gen activator (tPA, MW 72 kDa, Manosroi et al. 2001)
has been traced. On the other hand, in the transcribed
sequences of M. galloprovincialis, two sequences were
found that matched plasminogen [Accession No's.
Q01177 and Q6PBA6] (Venier et al. 2009). Furthermore,
despite the clear presence of Na+/K+-ATPase in our
analyses, we have been unable to find the presence of
phospholemman (FXYD1), known as a modulator of
Na+/K+-ATPase (Mahmmoud et al. 2000), even though
our analyses covered a wide range of molecular
weights (14.1 to 240 kDa). Since phosphorylation of
Na+/K+-ATPase causes dissociation of phospholem-
man, this may have led to its absence in the analyses.
In addition, salinity may also decrease the FXYD con-
tent relative to the Na+/K+-ATPase content (Wang et al.
2008). In another report (Horisberger 2006), it has been
indicated that no FXYD protein can be found in arthro-
pods or any nonvertebrate animals. We think that the only
way that is left to trace the absence or presence of FXYD
in bivalves is to analyse their DNA.
One of the fungi that have entered the list of com-

parative sequences is P. graminis at actin in Table 3.
This mould spreads its occurrence by spore formation
via two different hosts, thereby causing the so-called
stemrust, especially in wheat and barley (Schumann and
Leonard 2000). Although contamination of the brackish
water mussel with infected wheat and/or barley from
freight ships in the harbour cannot be excluded, another
possibility is indistinguishable peptides formed by trypsin
treatment (cf. Schuurmans Stekhoven et al. 2010) as used
in the analysis of actin from Crassostrea gigas [Accession
No. O17320] or Puccinia graminis [Accession No.
P50138]. A few of the possibilities are a20gfagddapr29,
h41qgvmvgmgqk51 and y70piehgivtnwddmek85 for Crassos-
trea gigas and the same sequences for Puccinia graminis,
but with a numbering of a19-r28, h40-k50 and y69-k84. It
appears that the sequences are quite conserved since
they are also found in β-actin of the mammal M. musculus
[Accession No. ABL01512].
Another subject of criticism is the possibly hereditary

plant sequences in the genome of the mussel. An ex-
ample could be the occurrence of Proteasome subunit α

http://www.buzzle.com/articles/pseudomonas-fluorescens.html
http://www.buzzle.com/articles/pseudomonas-fluorescens.html
http://www.pseudomonas-syringae.org
http://www.pseudomonas-syringae.org
http://www.brittannica.com/EBchecked/topic/67293/bivalve/35745/The-shell
http://www.brittannica.com/EBchecked/topic/67293/bivalve/35745/The-shell
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type-5A and ADP/ATP carrier protein from Arabidopsis
thaliana (thale cress). Thale cress grows on edges of
agricultural fields, stone walls alongside tracks and roads
and Mediterranean scrublands with scattered holm oaks
but is no inhabitant of wet lands (Picó et al. 2008).
Therefore, we have looked for comparable sequences in
MytiBase: a knowledgebase of mussel (M. galloprovincialis)
with 3,275 transcribed sequences (Venier et al. 2009). To
our surprise: also in this large list of transcribed proteins,
a few examples of plant heritage were met: first the occur-
rence of 14-3-3-like protein b of Oryza sativa (India
Group) [Accession No. ABR25888] together with 14-3-3
C1 protein from Oncorhynchus mykiss [Accession No.
Q6UFZ7]. Identical sequences, found for Oryza sativa
with those for O. mykiss (the latter between parentheses),
are e16-e34 (e113-e131), p65-f80 (p162-f177), l94-d100 (l191-d197)
and s113-d134 (s210-d231). It is evident that the sequence for
Oryza sativa is 97 amino acids less than that of O. mykiss,
due to incomplete DNA. Yet, we can calculate an identity
that must be minimally 25% the same. Since the sequences
in case of M. galloprovincialis have been determined via
DNA, we have to accept a genetic link between animals
and plants, and so the link with proteasome subunit α
type 5A, ADP/ATP carrier protein 3 and Arabidopsis
thaliana may be genuine and not artificial.
A second example of plant heritage by M. galloprovin-

cialis is found in the presence of probable ATPase from
the chloroplast of Oenothera organensis (organ Mountains
evening primrose) [Accession No. Q0H0T1] which grows
in the mountains of New Mexico, far away from the
mussel of the Mediterranean Sea. Hence, there has
been a time that they were neighbours. This hypothesis
is built on three assumptions:

1. SomeDNA of consumed food can be taken up in cells
and incorporated into the DNA of the consumer if it
displays some similarity with DNA of that consumer.

2. Since bivalves do not inhabit the mainland, the plant
consumers could be snails (Gastropods), which form
a sister clade with bivalves, forming the
Pleistomollusca (Kokot et al. 2011).

3. If geological conditions, like flooding, would force
gastropods to evolve to bivalves, it is not unthinkable
that bivalves would contain land plant sequences in
their genome as has been shown by Venier et al. (2009).
Before accepting this hypothesis, it will be necessary to
trace the snail's genome or RNA for plant resemblances.

In the generation of the brackish water mussel M. leuco-
phaeata in the period of 1,070 to 0 MYA, two additional
genetic uprises occurred beyond the uprise caused by
the generation of the bivalves per se (approximately 510
MYA). The question arises why this has to be achieved
by acceleration in a developmental uprise: the second
in the period of 48 to 4.75 MYA and the third in the
period of 1.4 to 0 MYA. In the 48 to 4.75 MYA period
(Eocene-Pliocene), earth was in motion with formation
of mountains and separation or collision of geological
plates, volcano formation, followed by climate cooling
(Pidwirny 2012). In the later period (1.4 to 0 MYA:
Pleistocene + Holocene), earth was subject to freezing
(Pleistocene Ice Age) with extinction of many species
(Pidwirny 2012), which may have forced the mussel to
a counterreaction by speeding up its adaptation of DNA
to that of modern species (cow, chimpanzee, human, dog,
stemrust and wild boar, Table 5).
Evidence for climate change-induced effects on adap-

tation of the genome of animals and plants has been
recently published (Reusch and Wood 2007; Buckley
et al. 2012; Franks and Hoffmann 2012). Failure to adapt
to the changes may eventually lead to extinction. In this
respect, M. leucophaeata did not fail, otherwise it could
not have been able to survive for 500 million years until
present (Figure 2). Therefore, it is remarkable that it has
only a limited range of salt concentration: 6.7 to 7.4 ppt
(0/00) to provide for an optimal condition. At higher sa-
linities, the condition index is reduced to 50 at a salinity
of 11 ppt (Grutters and Verhofstad 2010). Seawater usu-
ally has a salinity of 35 ppt (Office of Naval Research:
www.onr.navy.mil/focus/ocean/water/salinity 1.htm). There-
fore, one may question how M. leucophaeata can survive
the trip via the ocean to the brackish North Sea Channel.
Transportation of larvae and postlarvae with tolerance to
salinity of 32 ppt in ballast water makes the trip possible
(Verween et al. 2010). The salinity of the North Sea
Channel varies from 1.7 to 9.2 ppt (Van der Velde et al.
1998), which M. leucophaeata can enter with confidence.
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