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Abstract

Background: Changes in ambient temperature seriously affect physiological regulation and biochemical reactions
in ectotherms. However, transient elevation in oceanic temperature occurs naturally during the day. Short-term
elevation in the ambient temperature affects different physiological responses in marine fish, including cellular
protein stability and osmotic balance of the internal environment. Since fish gills are vital osmoregulatory organ
which directly contacts external environment, activation of cytoprotective responses to maintain gill cell viability
and biological function is essential for fish survival under challenging environmental conditions. The purpose of
this study was to investigate the short-term effects of elevated temperature on physiological regulation in the
gills of a marine teleost, blue green damselfish (Chromis viridis).

Results: As part of the stress response, plasma glucose levels were induced by short-term hyperthermic exposure (12 h).
Furthermore, upregulation of the levels of gill heat shock proteins (HSPs) and ubiquitinated proteins was essential
for preventing the accumulation of protein aggregations in branchial cells of C. viridis under hyperthermic stress.
The specific activity of branchial Na®/K*-ATPase (NKA), however, significantly reduced while the amount of protein
was similar between normal and high-temperature groups.

Conclusions: The present study provided the evidence to illustrate that activation of the branchial protein quality
control mechanism to carry out cytoprotective response was involved in coping with thermal stress. However,
plasma osmolality and muscle water content, respectively, that slightly but evidently increased and decreased
might result from impaired osmoregulatory ability due to hyperthermia-decreased gill NKA activity.
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Background

Most organisms on Earth are ectotherms which have to
survive and adapt to temperature fluctuations (Hochachka
and Somero 2002; Guschina and Harwood 2006; Somero
2010). Temperature fundamentally affects all aspects of
physiology by influencing the reactive rates as well as the
physical properties of biological molecules (Hochachka and
Somero 2002; Crockett and Londraville 2006). For marine
ectotherms including fish, environmental temperature has
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the pervasive effects on physiological and biochemical func-
tions at all levels of biological organization, from molecule
to organism (Jobling 1995; Hochachka and Somero 2002;
Hofmann et al. 2002; Donaldson et al. 2008). According to
the tolerance range of temperature, the fishes can be
classified into two groups, eurythermal and stenother-
mal species. Eurythermal fish can maintain metabolic
activity at temperatures as low as Antarctic fish can sur-
vive and withstand temperature as high as the avian and
mammalian body temperature. In contrast, changes in
environmental temperature may lead to the poor main-
tenance of physiological homeostasis in stenothermal
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species, resulting in temperature stress (Hochachka and
Somero 2002; Somero 2010; Long et al. 2012).

Under adverse conditions, the physiological stress re-
sponses of organisms should be promptly activated to
correct the disturbance, and cytoprotective mechanisms
should be employed for the maintenance of cell viability
and functional activity; otherwise, the survival of stressed
organism will be in danger (Hofmann and Somero 1995,
1996; Hofmann et al. 2002; Kregel 2002; Cui et al. 2013).
Furthermore, cellular proteins indeed carry out various
physiological functions responsible for cell viability. The ex-
pression and maintenance of protein quality depends on
mechanisms beyond those involved in transcription and
translation (Wickner et al. 1999). Chaperones and prote-
ases mediating the mechanism of protein quality control
(PQC) to prevent the accumulation of aggregated proteins
and maintain cellular function and activity are highly con-
served in organisms from different taxa (Gottesman et al.
1997; Wickner et al. 1999; Goldberg 2003; Bukau et al.
2006). Therefore, PQC should be a critical cytoprotective
mechanism for coping with temperature stress in ecto-
therms. However, study on the responses of PQC mechan-
ism to temperature challenge in fish is limited. The fish
gills are the multifunctional organ which directly contacts
the external environment (Evans et al. 2005; Kaneko et al.
2008); therefore, it is an excellent model to study stress re-
sponses and environmental effects in vivo.

Environmental temperature significantly influences in-
ternal electrolyte and osmotic homeostasis in aquatic ec-
totherms (Christensen 1975; Amoudi et al. 1996; Metz
et al. 2003; Sardella et al. 2004, 2008a). It is due to active
ion-transporting mechanisms that are regulated by many
proteins, while the cellular proteins of stenothermal species
are only marginally stable at a limited range of temperature
(Hochachka and Somero 2002; Metz et al. 2003; Crockett
and Londraville 2006; Sardella et al. 2008a). The fundamen-
tal transporter proteins responsible for osmoregulation in
gill epithelia have been reported in previous studies (see
Hirose et al. 2003; Evans et al. 2005; Hwang and Lee 2007;
Kaneko et al. 2008; Hwang et al. 2011). Among them,
Na'/K"-ATPase (NKA) is the most important enzyme that
actively transports Na* out of and K" into animal cells for
sustaining intracellular homeostasis as well as for providing
the driving force for ion-transporting systems in fish gills
(Hwang and Lee 2007; Hwang et al. 2011). Therefore,
branchial NKA responses (mnRNA and protein expression
and specific activity) have been used to assess the osmo-
regulatory status/ability of teleosts (Epstein et al. 1967;
Hwang and Lee 2007; Kaneko et al. 2008). In this regard, it
is worth examining the branchial NKA responses to inves-
tigate the impact of temperature stress on osmoregulatory
responses in stenothermal teleosts and clarify whether
the protein expression or specific activity of gill NKA is
susceptible to temperature challenge.
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The blue-green damselfish (Chromis viridis) is a steno-
thermal teleost that is abundant on coral reefs throughout
much of the Indo-Pacific region (Allen 1991; Lieske and
Myers 1994), including southern Taiwan (Shen et al. 1993).
Previous studies have shown that the average temperature
in Nanwan Bay, Kenting National Park, southern Taiwan is
26°C to 27°C and increases to approximately 32°C to 33°C
during the day (Meng et al. 2008; Mayfield et al. 2013).
Accordingly, the normal and hyperthermic temperatures of
26°C and 32°C, respectively, were used in this study. The
goal of this study was to investigate the stress responses,
PQC mechanism, and osmoregulatory response in the gills
of C. viridis exposed to an increase in ambient temperature
(32°C) for 12 h to ascertain the physiological strategies
employed by stenothermal teleosts under short-term ther-
mal stress.

Methods

Experimental animals and environments

Blue-green damselfish 2.8 +04 g in weight and 4.1+
0.7 cm in length were obtained from husbandry center
of National Museum of Marine Biology and Aquarium
(NMMBA), Pingtung, Taiwan. Fish were reared in a tank
with a 300 L seawater (SW, 33% to 35%o) circulating system
at 26 + 0.5°C with a daily 12-h photoperiod at least 4 weeks
for the holding period. The waters were continuously circu-
lated through fabric-floss filters, and the environmental sal-
inity was measured by the refractomter PAL-06S (ATAGO,
Tokyo, Japan). Fish were fed daily with commercial pellets
(TetraMarin’, Tetra, Melle, Germany) except 48 h prior to
the sampling. No mortality was observed during the hold-
ing period. For all following experiments, 28 individuals
were sacrificed. The facilities and protocols for the experi-
mental fish were approved by the Institutional Animal Care
and Use Committee of College of Marine Sciences, Nation
Dong Hwa University (i.e, NMMBA).

Short-term exposure of blue-green damselfish to elevated
temperature

After the holding period, blue-green damselfish were ran-
domly divided into two different groups for the control and
hyperthermic treatment. The temperature was maintained
at 26°C £0.5°C for control group and 32°C +0.5°C for
hyperthermic group. A 100 W automatic heater (EBO-
JAGER, El Segundo, CA, USA) was used to maintain the
temperature. After 12-h short-term exposure, the experi-
mental animals were randomly selected from two tanks
and anesthetized by immersion in MS-222 (50 mg/1) before
sampling.

Analysis of plasma glucose levels, plasma osmolality,

and muscle water content

Fish blood was collected from the heart using heparin-
ized 1 ml syringes and 21 G needles. After centrifugation
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at 1,000 x g at 4°C for 10 min, the plasma osmolality and
glucose levels were measured immediately using a Wescor
5520 Vapro osmometer (Logan, Utah, USA) and an
ACCU-CHEK Go blood glucose meter (Roche, Mannheim,
Germany), respectively. The muscle water content (MWC)
was measured gravimetrically after drying at 100°C for
48 h. The procedures of analysis of plasma glucose levels,
plasma osmolality, and MWC were determined according
to Tang and Lee (2013b).

Antibodies

The primary antibodies used in the present study included
(1) anti-heat shock protein 90 (HSP90) (1:1,500 dilution), a
rabbit polyclonal antibody (#4874; Cell Signaling Technol-
ogy, Beverly, MA, USA) corresponding to human HSP90;
(2) anti-HSP70 (1:2500 dilution), a mouse monoclonal anti-
body (H 5147; Sigma, St. Louis, MO, USA) generated by
immunization with purified bovine brain HSP70; (3) anti-
HSP60 (1:1,000 dilution), a mouse monoclonal antibody
(H3524; Sigma) recognizes an epitope located between
amino acid residues 383-419 of the human; (4) anti-
ubiquitin (1:2,000 dilution), a rabbit polyclonal antibody
(#3933; Cell Signaling Technology) corresponding to the
N-terminus of the human ubiquitin protein that detects
ubiquitin, polyubiquitin, and ubiquitinated proteins; (5)
anti-B-actin (1:5,000 dilution), a monoclonal antibody
(ab8226, Abcam, Cambridge, England, UK) against resi-
dues 1-100 of human [B-actin; and (6) anti-NKA (1:4,000
dilution), a mouse monoclonal antibody (a5; Developmen-
tal Studies Hybridoma Bank, Iowa City, IA, USA) raised
against the a-subunit of avian NKA. The secondary anti-
bodies for Western blot analyses were horseradish perox-
idase (HRP)-conjugated goat anti-rabbit or anti-mouse
IgG (Chemicon, Temecula, CA, USA). A 1:12,000 dilution
of secondary antibodies was used in the present study.

Cell protein fractionation and isolation of aggregated
proteins

The procedures of cell protein fractionation and isola-
tion of aggregated proteins were performed according
to published studies (Aufricht et al. 1998; Chen et al.
2002; Rinehart et al. 2006; Tang and Lee 2013a). The
studied tissues were homogenized in chilled extraction
buffer containing 0.1% Triton X-100, 60 mM PIPES,
1 mM EDTA, 1 mM ethylene glyco-bis(aminoethyl
ether)-N,N,N,N-tetraacetic acid and 100 mM NaCl
In addition, 40 pl of a proteinase inhibitor cocktail
(Roche, Mannheim, Germany) was added for each
milliliter of chilled extraction buffer. Homogenization
was performed in 2 ml tubes with a Polytron PT1200E
(Lucerne, Switzerland) at appropriate speed for 10 s.
The homogenate was centrifuged at 680 x g for 10 min
at 4°C to pellet nuclei and large cellular fragments. The
supernatant was assigned to the total cell lysates for
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the following analyses of HSPs and ubiquitinated pro-
teins. The resulting supernatant (total cell lysate) was
centrifuged at 35,000 x g for 14 min at 4°C to separate
the Triton-soluble and insoluble protein fractions. Ag-
gregated proteins were isolated by differential centrifu-
gation. The Triton-insoluble fraction was resuspended
twice in extraction buffer, sonicated, and pelleted at
17,000 x g for 30 min at 4°C. The resultant pellet was
again resuspended in extraction buffer, sonicated, and
pelleted at 5,000 x g for 30 min at 4°C. The pellet consisting
of aggregated proteins was resuspended in extraction buffer
(aggregated protein fraction) and stored at —80°C. Protein
concentrations of total cell lysates and aggregated protein
fractions were determined with a BCA Protein Assay Kit
(Pierce, Hercules, CA, USA) using bovine serum albumin
(BSA, Pierce) as a standard.

Preparation of crude membrane fractions

The procedure of preparation of crude gill membrane frac-
tions was performed according to Tang et al. (2012). The
gills of the fish were excised and blotted dry immediately
after the fish were killed by spinal pithing. The samples
were immersed in liquid nitrogen and placed into ice-cold
homogenization buffer (250 mM sucrose, 1 mM EDTA,
30 mM Tris, pH 7.4). Homogenization was performed in
2 ml tubes using the Polytron PT1200E homogenizer
(Lucerne, Switzerland) at appropriate speed for 10 s. Debris,
nuclei, and lysosomes were removed by low-speed
centrifugation (12,000 x g for 10 min, 4°C). The remaining
supernatant was centrifuged at medium speed (20,800 x g
for 1 h, 4°C). The resulting pellet was resuspended in
homogenization buffer and stored at —80°C. The pelleted
fraction contained large fragments of the plasma membrane
along with membranes from the Golgi and the endoplasmic
reticulum, but no small cytoplasmic vesicles as they typic-
ally do not pellet down unless greater forces (100,000 x g
for >1 h) are applied (Alberts et al. 1994). This fraction is
therefore referred to as the crude membrane fraction. Ali-
quots of crude cell membrane fractions were saved for pro-
tein determination analysis. Protein concentrations were
determined with BCA Protein Assay Kit (Pierce) using bo-
vine serum albumin (Pierce) as a standard. The crude
membrane fractions were stored at —80°C until the analysis
of Western blot and specific activity of gill NKA.

Western blot analysis

Gill proteins were heated in sample buffer at 90°C for
10 min for detection of HSPs in total cell lysates or at 37°C
for 30 min for detection of NKA in crude membrane frac-
tions. The samples were separated by electrophoresis on so-
dium dodecyl sulfate (SDS) containing 8% polyacrylamide
gels for detection of HSPs and NKA. The prestained protein
molecular weight marker was purchased from Fermentas
(SM0671; Hanover, MD, USA). The separated proteins were
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Table 1 Effects of short-term exposure to high temperature
on physiological parameters of blue-green damselfish

Environments NT HT

Plasma glucose levels (mg/dL) 540+26 100.2 +8.2*
Plasma osmolality (mOsm/kg) 347.1+£49 3792 +6.7*
Muscle water content (%) 874+08 795+ 0.6*

Values are expressed as the mean + SEM, n =6 for all groups. NT, normal
temperature (26°C + 0.5°C); HT, high temperature (32°C £ 0.5°C). The asterisk
indicated a significant difference (P < 0.05) by unpaired t test.

then transferred to PVDF membranes (045 pum pore size)
(Millipore, Bedford, MA, USA) by electroblotting. After pre-
incubation for 3 h in phosphate-buffered saline (PBS)
(137 mM NaCl, 3 mM KCl, 10 mM Na,HPO,, 2 mM
KH,PO,) with 0.075% (v/v) Tween 20, pH 7.4 (PBST) buffer
containing 5% (w/v) nonfat dried milk to minimize nonspe-
cific binding, the blots were incubated at room temperature
for 3 h with primary antibody diluted in 1% BSA and 0.05%
sodium azide in PBST, washed in PBST, and incubated at
room temperature for 2 h with secondary antibody. The im-
munoreactive bands were developed with HRP substrate,
Western Blot Enhancer Kit (T-Pro, New Taipei City,
Taiwan), and imaged with a Fusion FX7 system (Vilbert
Lourmat, Eberhardzell, Germany). f-actin was used as the
loading control for HSPs. To verify even the loading of the
crude membrane fractions, the protein amount of each lane
on the blots was quantified after staining the membranes
with Ponceau S (Romero-Calvo et al. 2010). The developed
blots were imported as TIFF files. Immunoreactions were
analyzed using a software package (MCID software, Imaging
Research, Ontario, Canada). The results were converted to
numerical values to compare the relative protein abundance
of the immunoreactions.

Dot blot analysis

Levels of ubiquitinated proteins in the gills were measured
using an immunochemical analysis modified from the study
of Todgham et al. (2007). Equal amounts of total protein
(10 pg) from each sample were blotted onto pre-wetted
nitrocellulose membrane (0.2 pm pore size) (Sartorius,
Epsom, Surrey, UK) in triplicates by gravity filtration using
a BioDot dot blotter (Bio-Rad, Hercules, CA, USA). Wells
were washed twice with 200 pl of PBST and then heat-fixed
at 65°C for 20 min. Then, the membrane was blocked in
5% (w/v) nonfat dried milk in PBST for 1.5 h. Following
blocking, the membranes were washed three times in PBST
(for 5 min each). The membranes were incubated at room
temperature for 3 h with primary antibody (anti-ubiquitin
antibody, Cell Signaling Technology) diluted in 1% BSA
and 0.05% sodium azide in PBST, washed in PBST, and sub-
sequently incubated at room temperature for 2 h with sec-
ondary antibody. The immunoreaction was developed with
Immobilon Western Chemiluminescent HRP Substrate
(Millipore) and imaged with a Fusion FX7 system (Vilbert
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Lourmat, Eberhardzell, Germany). The developed mem-
branes were imported as TIFF files. The immunoreactive
signals were analyzed using a software package (MCID soft-
ware). The results were converted to numerical values to
compare the levels of ubiquitinated proteins of the immu-
noreactive signals.

Specific Na*/K*-ATPase activity

A method using 96-well microplate to measure the inor-
ganic phosphate concentrations for determination of NKA
activity was performed according to Tang et al. (2010) with
minor modification. Aliquots of the suspension of gill crude
membrane fractions, prepared as described above, were
used to determine the protein concentration and NKA en-
zyme activity. The reaction medium (final concentration,
100 mM imidazole-HCl buffer, pH 7.6, 125 mM NaCl,
75 mM KCl, 7.5 mM MgCl,) was prepared according to
Tang et al. (2010). Then, 10 pl crude membrane fractions,
50 ul 10 mM ouabain (specific inhibitor of NKA) or deion-
ized water, and 100 pl 10 mM Na,ATP were added to
340 pl of the reaction medium. The enzyme activity was
defined as the difference between the inorganic phosphate
liberated in the presence and absence of ouabain in the re-
action mixture. The reaction mixture was incubated at the
exposure temperatures for 20 min followed by immediate
ice bath for 10 min to stop the reaction (Cheng et al. 1999).
Because the previous studies have demonstrated that the
specific NKA activity which was measured at the exposed
temperature of fish would correlate with the level of in vivo
activity (Metz et al. 2003; Sardella et al., 2008a), therefore,
the reaction was run at the exposure temperatures in this
study. The concentration of inorganic phosphate was
measured according to Doulgerakia et al. (2002). The
colorimetric reagent consisted of 1% Tween-20 and
0.75% ammonium molybdate in 0.9 M H,SO,. The re-
action mixtures and colorimetric reagent were mixed
in a 1:1 (v/v) ratio, and then, the concentration of inor-
ganic phosphate in each samples was determined by
a microplate reader (VERSAmax, Molecular Devices,
Sunnyvale, CA, USA) at 405 nm. Each sample was de-
termined in triplicates. Some protocols determine the
concentration of inorganic phosphate by measuring
the color of molybdenum blue, which is the reduced
product of phosphomolybdate. The instability of color
formation and reagents, however, were variables in
those protocols. The formation of the unreduced phos-
phomolybdate in the present study is directly propor-
tional to the amounts of inorganic phosphate.

Statistical analysis

In all experiments, statistical significance was determined
using Student's ¢ test (P<0.05) for group data analysis.
Values were expressed as means + S.E.M.
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Results

Physiological parameters: plasma glucose, osmolality, and
muscle water content

Compared to the normal temperature (NT, 26°C) group,
the levels of plasma glucose of blue-green damselfish were
significantly elevated after exposure to high temperature
(HT, 32°C) condition. In addition, plasma osmolality
and MWC which significantly increased and decreased,
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respectively, were found when blue-green damselfish
were exposed to elevated temperature (Table 1).

Changes of the abundance of gill heat shock proteins and
ubiquitin-conjugated proteins

In the cellular stress responses, the relative protein abun-
dance of stress proteins (i.e., HSPs) in fish gills was exam-
ined. Immunoblotting of the gills (Figure 1) from NT- and
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Figure 1 Protein expression of branchial heat shock protein 90 (HSP90), HSP70, and HSP60 in blue-green damselfish (Chromis viridis).
The representative immunoblots of HSP90, HSP70, and HSP60 showed a single immunoreactive band with a molecular mass about 90 (A), 70 (C), and

60 kDa (E), respectively. The immunoreactive bands of HT group are more intensive than that in the NT group. The protein amounts of HSP90 (B), HSP70
(D), and HSP60 (F) increased evidently after hyperthermic exposure (n = 5). 3-actin was used as the loading control. The asterisk indicated a significant
difference (P < 0.05) by unpaired t test. Values were mean + SEM. M, marker; NT, normal temperature (26°C); HT, high temperature (32°C).
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HT-exposed blue-green damselfish probed with primary
antibodies to HSP90 (Figure 1A,B), HSP70 (Figure 1C,D),
and HSP60 (Figure 1EF) resulted in single immunoreactive
bands with molecular weights of approximately 90
(Figure 1A), 70 (Figure 1C), and 60 kDa (Figure 1E), re-
spectively. Protein expression levels of branchial HSPs in
HT-exposed fish were significantly higher than those in
NT-exposed fish (1.61-fold for HSP90, Figure 1B; 1.69-fold
for HSP70, Figure 1D; and 1.64-fold for HSP60, Figure 1F).
The response of ubiquitin-conjugated proteins in blue-
green damselfish gills to reduced salinity was assayed by
using dot-blot analysis. Dot-blot analysis showed the levels
of ubiquitin-conjugated proteins in the gills of HT-exposed
C. viridis were higher than those in NT-exposed C. viridis
(Figure 2). Importantly, the aggregated proteins were main-
tained at similar levels between HT- (484 +10.5 pg/mg
total protein) and NT-exposed fish (40.1 +7.8 pg/mg total
protein) (Figure 3).

Na*/K*-ATPase responses

The relative protein abundance of branchial NKA was
examined. Immunoblotting of the gills from NT- and
HT-exposed blue-green damselfish obtained a single im-
munoreactive band with molecular weight of approxi-
mately 105 kDa (Figure 4A). The protein abundance of
gill NKA a-subunit in C. viridis was similar between two
studied environmental temperatures (Figure 4B). How-
ever, reduction of gill NKA specific activities was found
in fish exposed to HT condition (Figure 4C).

Discussion

Organisms naturally experience diverse environmental
challenges throughout their lives. For marine ectothermic
organisms, ambient temperature is one of the most signifi-
cant factors that affects diverse regulation (Hochachka
and Somero 2002; Hofmann et al. 2002; Crockett and
Londraville 2006; Donaldson et al. 2008; Somero 2010). In
fish physiological responses, the mechanisms associated
with stress and osmoregulatory responses are susceptible
to variation of environmental temperature (Hofmann and
Somero 1995; Iwama et al. 1999; Gonzalez and McDonald
2000; Metz et al. 2003; Place et al. 2004; Sardella et al.
2004; Fiess et al. 2007; Sardella et al. 2008a,b; Cui et al.
2011; Deane and Woo 2011; Feidantsis et al. 2012; Cui
et al. 2013). For ecological relevance, the experimental
temperatures used in this study were based on the average
(26°C) and daytime (32°C) temperatures in Nanwan
Bay, southern Taiwan (Meng et al. 2008; Mayfield et al.
2013) because C. viridis is abundant in Nanwan Bay
(Shen et al. 1993).

The stress responses are energy demanding processes,
changes in plasma glucose concentrations have widely
been used as a stress bioindicator at the organismal
level, because glucose is the main fuel source in animals
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Figure 2 Dot-blot analysis of the levels of ubiquitin-conjugated
proteins in the gills of blue-green damselfish (Chromis viridis). (A)
Ubiquitin-conjugated protein levels were shown as relative values
based on dot intensities. (B) Ponceau S total protein stain of blots
was used as loading control. (C) Significant elevation of the levels
of ubiquitin-conjugated proteins was found after hyperthermic
exposure. Unpaired t test was used for the statistics. Values are
means = S.EM (n=5). NT, normal temperature (26°C); HT, high

temperature (32°C).

(Basu et al. 2001; Afonso et al. 2003; Iwama et al. 2006).
To evaluate whether a short-term increase in environmen-
tal temperature would thermally stress C. viridis, its plasma
glucose concentrations were measured. Plasma glucose
levels increased from 54.0 + 2.6 to 100.2 + 8.2 mg/dL after
hyperthermic exposure (Table 1). Similar patterns were
found in juvenile Chinook salmon (Oncorhynchus tsha-
wytscha) (Mesa et al. 2002) and two Antarctic nototheniid
fish, Pagothenia borchgrevinki and Trematomus bernacchii
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Figure 3 The levels of aggregated proteins in the gills of
blue-green damselfish (Chromis viridis) exposed to different
temperature. There was no significant difference found in the
levels of aggregated proteins between NT and HT groups. Values
are means + S.EM (n=5). NT, normal temperature (26°C); HT,
high temperature (32°C).

(Lowe and Davison 2005), after short-term exposure to
thermal stress. Therefore, 32°C should be a stressful
temperature for C. viridis and more energy is needed to
compensate for the cost of the energy-demanding pro-
cesses involved in coping with thermal stress.

At the cellular level, temperature stress affects protein
synthesis and conformation, causing protein damage
(Hofmann and Somero 1995, 1996; Hochachka and Somero
2002; Rinehart et al. 2006; Todgham et al. 2007). Once the
damaged protein exists, the regulation associated with the
repair and degradation of damaged proteins is subsequently
triggered to prevent increase in protein aggregation that is
harmful to cell viability (Kabakov and Gabai 1993; Wickner
et al. 1999; Goldberg 2003; Bukau et al. 2006). Activation of
HSPs and protein ubiquitination which are involved in pro-
tein refolding and degradation in response to change in am-
bient temperature in aquatic animals have been reported in
several previous studies (Hofmann and Somero 1995, 1996;
Hochachka and Somero 2002; Hofmann et al. 2002; Place
et al. 2004; Iwama et al. 2006; Todgham et al. 2007; Cui
et al. 2011, 2013). However, the evidence of protein aggre-
gation level was lack to address the PQC mechanism
adequately. In the present study, HSPs and ubiquitin-
conjugated proteins evidently elevated in C. viridis exposed
to 32°C (Figures 1 and 2), whereas protein aggregation
was similar to the normal temperature group at low
level (Figure 3). However, elevated protein aggregation
levels were found when organisms were cultured in
high mortality conditions (Rinehart et al. 2006; Choe
and Strange 2008). Thus, our findings assumed that
the upregulation of HSPs and ubiquitin-conjugated
proteins was sufficient to prevent the accumulation of
aggregated proteins in C. viridis to adapt to transient

170 —
130 —
100 —

—— e NKA

70 —

45

30 T

15|

Relative protein abundance of NKA a - subunit
(arbitrary units)

NT HT
Temperatures

(9]

2 - \ T

0 NANNRNN .
NT HT

Temperatures

Gill NKA activity
{nmole Pifmg protein/hr)
*

Figure 4 Impact of changes in temperature on the responses
of gill Na*/K*-ATPase (NKA) in blue-green damselfish (Chromis
viridis). (A) Immunoblots of C. viridis gills probed with a monoclonal
antibody (a5; DSHB) to NKA a-subunit. The immunoreactive bands
of HT group were more intensive than NT group. (B) Relative abundance
of immunoreactive bands of NKA a-subunit in the gills of different
temperature groups (n = 5). Expression of NKA a-subunit was similar
between NT and HT groups. (C) Specific activity of gill NKA in C.
viridis in response to elevation of ambient temperature (n = 5).
Downregulation of branchial NKA activity was found after hyperthermic
exposure. The asterisk indicated a significant difference (P < 0.05) by
unpaired t test. Values were mean + SEM. M, marker; NT, normal
temperature (26°C); HT, high temperature (32°C).
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elevation of ambient temperature. To our knowledge, this
is the first study to examine the expression of HSPs, ubiqui-
tinated proteins, and protein aggregation levels simultan-
eously in fish, in response to temperature challenge.

The internal ionic and osmotic balance of fish is af-
fected by ambient temperature (Gonzalez and McDonald
2000; Metz et al. 2003; Sardella et al. 2004; Fiess et al.
2007; Sardella et al. 2008a, b). After exposure of C. viri-
dis to hyperthermic condition, significant increase of
plasma osmolality as well as decrease of muscle water
content were found (Table 1). This might be explained
by the marked depression of branchial NKA activity at
32°C, even though the protein expression of gill NKA
was not affected (Figure 4). Moreover, in this study,
NKA activity was assayed at the exposure temperature
of the fish to show the apparent NKA activity to provide
a physiological interpretation of our results. This is be-
cause temperature affects the reactivity of molecules by
affecting protein conformation, kinetic properties, and
assembly. On the other hand, activation of ion trans-
porter system is energy-required while the rate of cellu-
lar respiration the main process for energy providing is
temperature-dependent (Hochachka and Somero 2002).
Therefore, the decrease in gill NKA activity reflected
that metabolically-dependent ion transporter proteins
are more susceptible to temperature change than is pas-
sive ion diffusion (Christensen 1975; Hochachka and
Somero 2002). Furthermore, temperature inhibited the
specific activity of NKA was found in the common carp
(Cyprinus carpio) and the Mozambique tilapia (Oreo-
chromis mossambicus). By using biochemical and immu-
nohistochemical approaches, it was found that a lower
apparent NKA activity was compensated for by strongly
enhanced NKA expression (Metz et al. 2003; Sardella
et al. 2008a). The present study was difficult to rule out
the possibility that the other compensatory responses
were enhanced in C. viridis only based on protein ex-
pression of gill NKA.

Conclusions

A local species and recorded in situ water temperature
were used in this study to understand the impacts of
short-term increases in temperature on stress responses,
cellular protein stability, and osmoregulatory status in a
reef-associated fish by using physiological and molecular
approaches. The results provided the implication for eluci-
dation that C. viridis possesses the molecular mechanisms
for coping with thermal stress to maintain protein stability,
but inhibitory effects on osmoregulatory ability resulted
in slight changes of plasma osmolality and muscle water
content.
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