Leander et al. Zoological Studies 2013, 52:30
http://www.zoologicalstudies.com/content/52/1/30

® Zoological Studies

a SpringerOpen Journal

RESEARCH Open Access

Effects of metamorphosis timing and the larval
growth rate on the latitudinal distribution of
sympatric freshwater eels, Anguilla japonica and
A. marmorata, in the western North Pacific

Nico Jose Leander', Wann-Nian Tzeng"*", Nian-Tzu Yeh', Kang-Ning Shen'? and Yu-San Han'

Abstract

increments in their otoliths.

Background: Early life history traits of the temperate eel Anguilla japonica and tropical eel Anguilla marmorata were
examined to determine the possible reason why these two species have similar spawning areas and oceanic larval
transport in the North Equatorial Current and yet are recruited to different but partly overlapping continental
growth habitats in northern East Asia. To understand the segregative migration of these two sympatric eel species,
their glass eels were collected from nine estuaries in the Philippines, Taiwan, Japan, and China. The age at
metamorphosis from leptocephalus to glass eel (T,,), the age at estuarine arrival (T), the time between
metamorphosis and estuarine arrival (7,_;,), and the growth rate (G,) of glass eels were calculated from daily growth

Results: Results indicated that the G, was faster and the T,,, was younger in A. marmorata than in A. japonica. On
the other hand, fish length and the T; at estuarine arrival were larger in A. japonica than in A. marmorata, indicating
that elvers of A. japonica experience a longer oceanic drift than those of A. marmorata. In addition, the T,_, also
indicated that A. japonica experienced a longer coastal migration than A. marmorata.

Conclusion: This study validated that the T, and G, seem to play important roles in the segregative migration and
latitudinal distribution of these two sympatric freshwater eel species in the northwestern Pacific.

Keywords: Otolith; Daily growth increment; Japanese eel; Giant mottled eel; Larval migration

Background

Due to their mysterious life history and economic im-
portance, freshwater eels (Anguilla spp.) have been the
focus of much scientific research for decades. However,
despite these efforts, most of the aspects of their early
life history are still not completely understood. In the
past three decades, dramatic declines in glass eel recruit-
ment of temperate species like the American (Anguilla
rostrata), European (Anguilla anguilla), Japanese (Anguil
la japonica), and Australian (Anguilla australis) eels
have raised concerns (Jellyman et al. 2000; Hoyle and
Jellyman 2002; Tatsukawa 2003; Dekker 2008; Richkus

* Correspondence: wnt@ntu.edu.tw

TInstitute of Fisheries Science, College of Life Science, National Taiwan
University, Taipei 10617, Taiwan

“Department of Environmental Biology and Fisheries Science, National
Taiwan Ocean University, Keelung 20224, Taiwan

@ Springer

and Whalen 2000). The reasons for the declines are un-
clear but are probably due to reductions in spawning
stocks (Jansen et al. 2007; Winter et al. 2007; Clevestam
et al. 2011), overfishing (Tzeng et al. 1995; Moriarty and
Dekker 1997; Jellyman et al. 2000; Hoyle and Jellyman
2002; Briand et al. 2003; Chisnall et al. 2003; Dekker
2003; Lin et al. 2010), growth habitat and access reduc-
tions (Busch et al. 1998; Haro et al. 2000; McCleave
2001; McCleave and Jellyman 2004; Verreault et al.
2004; Graynoth et al. 2008), pollution (Amiard-Triquet
et al. 1988; Robinet and Feunteun 2002; Palstra et al.
2006; van Ginneken et al. 2009), swim bladder and gill
parasites and viral infections (Haenen et al. 2002;
Szekely et al. 2002; Kirk 2003; Sures and Knopf 2004;
van Ginniken et al. 2005; Han et al. 2008, 2009a; Sasal
et al. 2008; Parker et al. 2011), global climate change
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(Castonguay et al. 1994; Kimura et al. 2001; Casselman
2002; Knights 2003; Han et al. 2006, 2009b; Friedland
et al. 2007; August and Hicks 2008; Bonhommeau et al.
2008; Miller et al. 2009), and the solar cycle (Tzeng et al.
2012). To understand the declines, it is necessary to
study the early life history of anguillid eels. The life his-
tory of eels during the continental growth phase is well
documented, but knowledge of the marine larval life
stage from the spawning ground to the estuary is still
fragmented (McCleave 1993; Cheng and Tzeng 1996;
Wang and Tzeng 2000; Tzeng 2003; Edeline et al. 2009;
Miller 2009). Early life history information is very
important because it is a key factor in understanding
possible reasons for recruitment success or failure of
anguillid eels and also for their artificial propagation.
The temperate eel A. japonica and tropical eel Anguil
la marmorata are just two dominant species of anguillid
eels in Taiwan, the distribution and recruitment season
of which differ (Tzeng 1982; Tzeng and Tabeta 1983;
Kuroki et al. 2009; Leander et al. 2012). Both species
spawn in waters west of the Mariana Islands in the
Pacific Ocean (Kuroki et al. 2009; Tsukamoto et al.
2011), and their marine larvae or leptocephali are
transported westward by the North Equatorial Current
(NEC) from their spawning grounds to the continental
shelf of the northwestern Pacific. Furthermore, A.
marmorata larvae drift in both the northwardly flowing
Kuroshio Current (KC) and the southwardly flowing
Mindanao Current, while A. japonica larvae only enters
the northwardly flowing KC that transports them to East
Asia, particularly Taiwan, China, Japan, and Korea. Why
A. japonica larvae only enter the KC region, while A.
marmorata, after being transported by the NEC, can
enter both the northwardly flowing KC (which carries
them to eastern China, southern Japan, and Korea) and
the southwardly flowing Mindanao Current (that carries
them to recruitment areas in northern Indonesia, the
Philippines, and Taiwan), is still unclear (Kuroki et al.
x2009). Recently, Han et al. (2012) pointed out that re-
cruitment temperature preferences and oceanic current
systems control the distinct biogeography of A. japonica
and A. marmorata. Aside from these abiotic parameters,
biological factors should also be taken into consideration
in explaining this ecological discrepancy, but the early
life histories of these two species particularly during the
oceanic phase are not yet fully understood, especially
that of A. marmorata. Upon reaching continental wa-
ters, it was also found that their distributions in estuaries
also geographically differed. For example, A. japonica is
abundant along the northern and western coasts of
Taiwan, while A. marmorata is abundant along the
southern and eastern coasts (Leander et al. 2012; Han
et al. 2012). In addition, it was also observed that in the
same river system, A. marmorata occupied the upper
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reaches while A. japonica occupied the lower reaches
(Shiao et al. 2003). These observations indicated that mi-
crohabitats of these species evolved differently to avoid
interspecific competition for food and space, although
their distribution areas overlap. Also, genetic (mitochon-
drial DNA and microsatellites) and morphological
(total number of vertebrae) studies suggested that A.
marmorata has at least four or five different spawning
populations in the entire Indo-Pacific region: the North
Pacific (Sulawesi/northern Indonesia, the Philippines,
Taiwan, China, Korea, and Japan), South Pacific (Fiji,
New Caledonia, and Papua New Guinea), Indian Ocean
(Madagascar, Reunion, and Sumatra), Micronesia
(Guam, Palau, and the Caroline Islands), and Tahiti
(Ishikawa 1998; Ishikawa et al. 2004; Minegishi et al.
2008; Watanabe et al. 2008, 2009).

Recent studies specifically on A. japonica (Tzeng
2003) indicated that the otolith microstructure and
microchemistry can provide some clues to understand-
ing the early life history of fish during their migration
from spawning grounds until recruitment, but little is
known about the early life history of most tropical spe-
cies, particularly A. marmorata (Sugeha et al. 2001a;
Arai et al. 2002a, b; Miller et al. 2002; Shiao et al. 2003).
Also, it was found that the age at metamorphosis from
the leptocephalus to glass eel can be determined by
changes in otolith microstructures and in strontium/cal-
cium (Sr/Ca) ratios in daily growth increments (DGIs) of
otoliths (Tzeng and Tsai 1992, 1994; Tzeng 1995). The
Sr concentration in the otolith decreases dramatically
during metamorphosis, and a visible metamorphosis
check (MC) is also deposited during this period. Since
the growth increments of otoliths of anguillid eels are
deposited on a daily basis (Martin 1995; Arai et al. 2000;
Cieri and McCleave 2001; Sugeha et al. 2001b), the age
of the leptocephalus at metamorphosis can be deter-
mined from the number of DGIs from the primordium
and the MC where the increment pattern and Sr/Ca ra-
tios dramatically change (Tzeng and Tsai 1994; Tzeng
1996; Arai et al. 1999a). In other words, since the struc-
ture of growth increments in the anguillid eel's otoliths
change with growth and growth checks appear in every
life history stage transition, the duration of each life his-
tory stage can be determined by counting the DGIs in
each section of an otolith.

In the present study, we reviewed the early life history
of the temperate eel A. japonica which was studied by
Cheng and Tzeng (1996). Meanwhile, the early life his-
tory of the tropical eel A. marmorata collected from
three estuaries in the Philippines, Taiwan, and Japan was
also studied following the techniques used for A. japon-
ica in a previous study (Cheng and Tzeng 1996). Only
the North Pacific population of A. marmorata was con-
sidered in the present study. Based on information such
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as the timing of metamorphosis from leptocephalus to
glass eel, the inshore migration period of the glass eel,
the age and size at estuarine arrival, and growth rates of
leptocephali and glass eels, we attempted to understand
the evolution and adaptation of these two sympatric spe-
cies in their distribution areas. Segregative migration
and the recruitment mechanism of these two species in
the northwestern Pacific were also addressed.

Methods

Fish sample collection

In total, 168 A. marmorata glass eels were collected
from the estuaries of the Hsiukuluan River, eastern
Taiwan (n = 86) on 20 May 2008; the Cagayan River,
northern Philippines (n = 45) on 19 May 2008; and the
Kurio River, southern Japan (# = 37) on 6 June 1996
(Table 1, Figure 1). Procedures of fish handling were car-
ried out in accordance with the ethical standards and
guidelines for animal experiments of National Taiwan
University. All specimens were immediately preserved in
95% ethanol after measuring the total lengths (TLs) to
the nearest millimeter (mm). On the other hand, A.
japonica specimens examined from a previous study
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(Cheng and Tzeng 1996) were collected from the estuar-
ies of the Tungkang River, southern Taiwan (# = 60) on
30 December 1992 and 24 March 1993; the Shuangshi
River, northern Taiwan (7 = 60) on 20 December 1992
and 17 February 1993; the Mingchiang River, eastern
China (7 = 30) on 1 March 1993; the Chyantarng River,
eastern China (n = 30) on 17 February 1993; the Yalu
River, northern China (# = 30) on 3 May 1993; and the
Ichinomiya River, eastern Japan (n = 30) on 10 January
1994 (Table 1, Figure 1).

Determination of the developmental stages of the fish
samples

Developmental stages of eel samples from the glass eel
to the elver stages were determined according to the
extent (or absence) of skin pigmentation over the head,
tail, and other body regions following the methods
described by Strubberg (1913), Bertin (1956), and Tesch
(1977, 2003). Postmetamorphic juveniles were subclas-
sified into stages Va, Vg, VIao1, VIaz, VIas, VIpg, VIg, and
VIL Juveniles up to stage VI,, were classified as glass
eels, while those in stages VI3 and VIy, were in the
transition stage to elvers, which become fully pigmented

Table 1 Sampling and age information of Anguilla japonica and Anguilla marmorata specimens analyzed in this study

Species Sampling site Sampling date Number Total length (mm) Age (days)
T Te Tem
A. japonica® Tungkang River, 30 December 30 (16) 570+ 20 1387 + 143 1777 £178 390+ 112
Taiwan 1992
24 March 93 30 (14) 56.1 £ 24 134.0 + 141 1744 £ 179 404 £ 110
Shuangshi River, 20 December 30 (12) 56.8 +23 135.7 + 166 1750 + 209 395+92
Taiwan 92
17 February 93 30 (13) 559 +22 1289 + 146 1744 £ 177 455+ 134
Mingchiang River, 1 March 93 30 (20) 551+£19 1396 + 10.1 1721 £ 141 325+ 77
China
Chyantarng River, 17 February 93 30 (23) 556+ 19 148.1 = 14.7 1949 + 186 468 + 89
China
Yalu River, China 3 May 93 30 (23) 583+ 18 1574 +£16.1 1993 + 156 419+ 39
Ichinomiya River, 10 January 94 30 (10) 574+ 23 1433+ 79 186.6 = 7.0 433+ 52
Japan
Overall (uy) 240 565+ 2.1 140.7 £ 136 1818 £ 162 41.1+£88
(131)
A marmorata  Cagayan River, the 19 May 08 45 (13) 495+ 15 1104 £ 128 144.8 £ 142 343+79
Philippines
Hsiukuluan River, 20 May 08 86 (13) 516 £16 1124+ 123 1340 £ 154 226 £ 66
Taiwan
Kurio River, Japan 6 June 96 37 (15) 46.7 £ 1.7 1177 £ 168 1450+ 178 273 +89
Overall (u2) 168 (41) 493+ 16 1135+ 130 1416 £ 158 281 +£78
Difference 72 272 40.2 130
(H1-H2)
Significance A. japonica > A. A. japonica > A. A. japonica > A. A. japonica > A.

marmorata

marmorata marmorata marmorata

#Cheng and Tzeng (1996). Values inside parentheses indicate the number of individuals used for aging. Daily age of glass eels at the estuary (T), daily age at
metamorphosis from leptocephalus to glass eel (T,,) and the time between the metamorphosis check and estuarine arrival (Ti.pm).
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Figure 1 Map showing the geographic distributions of Anguilla japonica and A. marmorata. Map showing the geographic distributions of
Anguilla japonica (thick gray lines on the coastlines) and A. marmorata (thick black lines on the coastlines) in East Asia and collection sites of
samples analyzed in this study (white triangle, A. marmorata; white circle, A. japonica; Cheng and Tzeng 1996). General patterns of current
systems in the western North Pacific and central Indonesian seas (adapted from Nitani 1972 and Lukas et al. 1991) and spawning grounds of A.
Japonica (gray circle with the letter J) and A. marmorata (black circle with the letter M) (Kuroki et al. 2009; Tsukamoto et al. 2011) are also shown.
Sampling locations: Tungkang River (T) and Shuangshi River (S), Taiwan; Mingchiang River (M), Chyantarng River (C), and Yalu River (Y), Ching;
Ichinomiya River (1), Japan; Cagayan River (P), the Philippines; Hsiukuluan River (H), Taiwan; and Kurio River (J), Japan. NEC, North Equatorial
Current; KC, Kuroshio Current; OC, Oyashio Current; TS, Tsushima Current; CCC, China Coastal Current; SCSWC, South China Sea Warm Current; IK,
Intruded Kuroshio; MC, Mindanao Current; NECC, North Equatorial Counter Current; SEC, South Equatorial Current.

at stage VI stage (Fukuda 2010). Stage VIp indicates the
end of pigmentation, while stage VII represents the fully
pigmented, benthic elver (Tabeta and Mochioka 2003).

Otolith preparation for microchemical analyses

Sagittal otoliths, the largest of the three pairs of otoliths
in the inner ear, were extracted and embedded in epofix
resin. The embedded otolith was ground and polished
with a grinding machine until the primordium was ex-
posed. Sr and Ca concentrations were measured from
the primordium to the otolith edge at 10-pum intervals
with an electron beam of 5 um in diameter, using an

electron probe microanalyzer equipped with a wave-
length-dispersive spectrometer (WDS-EPMA, JEOL JX
A-8900R, Tokyo, Japan). The accelerating voltage was
set to 15 kV and the probe current to 3 nA. The peak
concentration of Sr was counted for 80 s with back-
ground measurements for 20 s on each side. On the
other hand, the peak concentration of Ca was counted
for 20 s and each background for 10 s. Strontianite
(SrCO5;, USNM-R10065) and calcite (CaCos;, USNM-
36321) from the Department of Mineral Sciences,
National Museum of Natural History, Smithsonian Insti-
tution, Washington, D.C., USA, were used as standards
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to calibrate the Sr and Ca concentration in eel otoliths.
After the microchemical analysis, the otolith was poli-
shed to remove the carbon layer and etched for 1 to 2
min with 5% ethylenediaminetetraacetic acid (EDTA) to
reveal the DGIs. Procedures for embedding, sectioning,
polishing, and etching otoliths to reveal the DGIs and
measuring the otolith Sr/Ca ratios followed those de-
scribed in previous studies by Tzeng (1990, 1996), while
the procedure for measuring the otolith Sr/Ca ratios
followed that of Tzeng and Tsai (1994).

Otolith microstructural analyses

The DGIs in the otoliths were examined from scanning
electron microscopic (SEM) photographs at various
magnifications (x200, x1,000, and x1,500). Both the
DGIs and Sr/Ca ratios were measured along the longest
otolith axis. Growth checks of each early life history
event or transition recorded in the otoliths were identi-
fied using both otolith microstructures (the DGI width)
and microchemistry (Sr/Ca ratios). DGIs in each of the
developmental stages and otolith radius were counted
and measured from these landmarks as shown in
Figure 2. Because otolith increments in A. marmorata
and A. japonica were confirmed to be deposited on a
daily basis (Tabeta et al. 1987; Umezawa et al. 1989;
Sugeha et al. 2001b), the increment number was consid-
ered as the daily age in each individual examined in the
present study. The drastic change in otolith Sr/Ca from
the primordium to the otolith edge coincided with major
life history events in the life of the young eels, like first
feeding, metamorphosis, etc., as reported in previous
studies for both temperate and tropical anguillid species
(Tzeng and Tsai 1992, 1994; Otake et al. 1994; Tzeng
1996; Arai et al. 1997, 1999a, b, ¢; Cieri and McCleave
2001; Marui et al. 2001). The age of the leptocephalus at
the onset of metamorphosis (7,,) was determined from
the number of DGIs between the primordium (P) and
MC where the increment pattern and Sr/Ca ratios dra-
matically changed (Otake et al. 1994, 1997; Tzeng and
Tsai 1994; Tzeng 1995; Kuroki et al. 2005; Arai et al
2002a). To estimate the Ty, 13 days (adjustment factor,
Np) was added to the number of DGIs because a previ-
ous study found that no increment was deposited in the
core of the otolith during the yolk-sac stage, and otolith
growth increment deposition only commences once a
larva begins feeding 13 days after hatching (Tanaka et al.
1995). The duration of the metamorphosis stage was de-
termined by counting the number of DGIs between the
onset of a marked increase in the otolith increment
width and its maximum peak. The amount of time be-
tween metamorphosis and estuarine arrival (T;_,,) was
calculated by counting the number of DGIs between the
MC and the edge of the otolith, while the age at recruit-
ment (7, was determined as the number of DGIs
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between the hatch check and otolith edge. On the other
hand, radii from the primordium to the first feeding
check (Ry), to the MC (R,,), and to the otolith edge (R,)
and the distance from the MC to the otolith edge (R, .,)
were measured along the longest sagittal axis of the oto-
lith (Figure 2). Otolith growth rates at different develop-
mental stages were calculated by dividing the otolith
radius by the DGI (Equations 1 to 3). Because incre-
ments near the metamorphosis zone in the otolith of
some samples were often diffusive and obscure, the daily
age of samples without counting DGIs was calculated
from both the otolith growth rate and otolith radius
(Equations 4 to 6):

R
Overall growth rate of otolith, G, = ?t (1)
t
. R
Early growth rate of otolith, G, = T (2)
. . Rt-m
Estuarine growth rate of otolith, G, = T (3)
t-m
R —R¢
Tm= N 4
G +No (4)
Tem
Tem = 5
‘ Gt-m ( )
Tt = Tm + Tt-m (6>

where G,, and G,_,, were obtained from Equations 2
and 3, and Nj is the adjustment factor (13 days) for the
yolk-sac stage duration. Differences in the total length
(TL), daily age, and growth rate between A. japonica and
A. marmorata were tested by an analysis of variance
(ANOVA) as implemented in SigmaStat vers. 3.1 (Systat
Software, San Jose, CA, USA).

DGls and growth checks in the otoliths

Otolith microstructures between the temperate A. japon-
ica and tropical A. marmorata were fundamentally
the same (Arai et al. 2001a). DGIs in otoliths of glass
eels are composed of two layers called the incremental
(L) and discontinuous (D) zones, which respectively
appeared to be light and dark as revealed by the SEM
photo in Figure 2a. The L-zone is rich in calcium car-
bonate (CaCO3), while the D-zone is very rich in protein
but poor in calcium. When etched with hydrochloric
acid (HCI) or EDTA and viewed under an SEM, the
L-zone appeared elevated while the D-zone appeared as
a ridge. A single DGI is usually composed of an L-zone
and a D-zone and is generally deposited on a daily basis.
Near the otolith edge, a distinct growth check called the
elver check was found (Figure 2b). The elver check was
deposited in the elver stage during its migration from
seawater to freshwater. It also marks the transition from
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between the MC and OFE, respectively.

Elver
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Tim
Glass eel
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Tm Leptocephalus
"M Rm

Yolk sac
Embryo

Figure 2 SEM photographs showing daily growth increments (DGls) and growth checks in an Anguilla marmorata otolith. (a) SEM
photographs showing daily growth increments (DGls) and growth checks in an otolith of an Anguilla marmorata elver and measurements of
otolith radii (R) and counts of DGlIs (T) according to the developmental stage. Scale bar = 20 um. (b to e) Magnified portions of (a) showing (b)
estuarine check (EC) and the otolith edge (e), (c) metamorphosis check (MC), (d) discontinuous (dark band, Dz) and increment (light band, Lz)
zones, and (e) the primordium (P), hatching check (HC), and first feeding check (FFQ). Ry, Rm, Ry, radii from the primordium to the FFC, MC, and
OF, respectively; R,_n, distance from the MC to the OF; OL, otolith length; T, Ty, Tr_m, counts of DGls on radii of R, and R; and the section R,_,

the glass eel to the elver stage. On the other hand, DGIs
at the beginning of the leptocephalus stage were wide
and clear but became very diffuse and obscure and
almost uncountable near the metamorphosis area
(Figure 2c). This indicated that the leptocephalus grew
fast during the early developmental stage, then gradually
slowed down and reached an asymptotic length before
metamorphosis. Thus, an MC was deposited at the tran-
sition from the leptocephalus to glass eel stage. After the
MC to the otolith edge, the DGIs became wider, indicat-
ing that growth speeded up after metamorphosis. The
P in the otolith of the elver was an amorphous structure
which appeared as a deep hole after etching with HCI or
EDTA (Figure 2d). Distinct concentric growth incre-
ments and check rings were observed around the P that

marked hatching (HC) and first feeding (FFC). The HC
appeared as a deep circular grove surrounding the P.
between the HC and FFC, no distinct DGI was discern-
ible (Figure 2d). From the P to the otolith edge, the
change in DGI widths revealed the growth history of the
eel as it migrated from the oceanic spawning ground
until it was recruited to the estuary (Figure 2e). Also, the
DGIs recorded different life history and developmental
stage transitions.

Larval dispersal distance and age at metamorphosis

To determine the effect of metamorphosis from lepto-
cephalus to glass eel on the larval dispersal distance, the
age at metamorphosis of glass eels from each of the
sampling locations in East Asia were compared in
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relation to their distances from the spawning grounds of
both species in waters west of the Mariana Islands (12 to
17°N, 131 to 143°E; Kuroki et al. 2009).

Results

Differences in size and age at estuarine arrival between
species and among locations

TLs of A. japonica glass eels at estuarine arrival ranged
from 55.1 + 1.9 mm in the Mingchiang River, southeastern
China to 58.3 + 11.3 mm in the Yalu River near the border
of China and North Korea (Table 1), while those of A.
marmorata ranged from 46.7 + 1.7 mm in the Kurio River,
southern Japan to 51.6 + 1.6 mm in the Hsiukuluan River,
eastern Taiwan. Within the same species, A. japonica glass
eels from the Yalu River were significantly longer than
those from the other estuaries (¢ test, p < 0.01), but those
from other rivers showed no significant difference (¢ test,
p > 0.05). On the other hand, no significant difference
(¢ test, p > 0.05) in TL was observed among A. marmorata
samples. The length-frequency distribution of recruiting
A. marmorata and A. japonica glass eels in the
Philippines, Taiwan, China, and Japan are shown in
Figure 3. Anguilla japonica glass eels at estuarine arrival
were significantly longer than A. marmorata (p < 0.001).
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The T, was observed to be significantly older (p < 0.001)
in A. japonica (181.8 + 16.2 d) than that in A. marmorata
(141.6 + 15.8 days), indicating that the latter were
recruited to the estuary earlier than the former. On the
other hand, the duration of migration from the time of
metamorphosis to the time of estuarine arrival (7¢_,) was
significantly longer in A. japonica (41.1 + 8.8 days) than
that in A. marmorata (28.1 £ 7.9 days) (p < 0.001). This
indicated that after metamorphosing, A. japonica experi-
enced a longer drifting time by coastal currents before
being recruited to estuaries than did A. marmorata.

Developmental stages

The majority of A. marmorata collected and examined
(n = 168) from various estuaries and rivers in East Asia
were at stage V, (55.4%) followed by stage Vgy (44.6%)
(Table 2). No A. marmorata in a more advanced devel-
opmental stage (i.e., stages VI or VII) was observed,
suggesting that individuals had recently arrived at the
river mouth when they were collected. On the other
hand, the majority of A. japonica examined (n = 240)
were at stage V, (51.7%) followed by stages Vg (32.1%),
VIar (12.5%), VIas (3.3%), and VIgs (0.4%). Also, the oc-
currence of larger A. japonica individuals in the Yalu

42 43 44 45 46 47 48 49 50
Total length (mm)

N
| &
=

50 51 52 53 54 55 56 57 58 59 60 61 62 63
Total length (mm)

Figure 3 Length-frequency distribution of recruiting Anguilla marmorata (a) and A. japonica (b) glass eels from the Philippines, Taiwan,
China, and Japan.
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Table 2 Pigmentation stages of glass eels of Anguilla japonica and Anguilla marmorata collected from various rivers

and estuaries in East Asia

Species Sampling site Number Pigmentation stage
Va Vg Viaq Viaz Vias Viag Vig
A. japonica® Tungkang River, Taiwan 30 28 2 0 0 0 0 0
30 24 6 0 0 0 0
Shuangshi River, Taiwan 30 13 17 0 0 0 0 0
30 9 16 5 0 0 0 0
Mingchiang River, China 30 24 6 0 0 0 0 0
Chyantarng River, China 30 21 9 0 0 0 0 0
Yalu River, China 30 0 1 21 7 1 0 0
Ichinomiya River, Japan 30 5 20 4 1 0 0 0
Total 240 124 77 30 8 1 0 0
% composition 51.7 321 125 33 04 0 0
A. marmorata Cagayan River, the Philippines 45 15 30 0 0 0 0 0
Hsiukuluan River, Taiwan 86 65 21 0 0 0 0 0
Kurio River, Japan 37 13 24 0 0 0 0 0
Total 168 93 75 0 0 0 0 0
% composition 554 44.6 0 0 0 0 0

#Cheng and Tzeng (1996).

River (Table 1) corresponded with their more advanced
pigmentation states (VIa, and VI,3) (Table 2).

Ontogenetic changes in daily growth rate of otoliths

The overall mean otolith DGI widths of glass eels at dif-
ferent phases of their early life history are shown in
Table 3. The mean DGI width before metamorphosis
(Rn/Ty) was 0.8 + 0.07 um/days in A. japonica and
09 + 0.14 pm/days in A. marmorata, which was
narrower compared to that of the mean otolith DGI
width from the metamorphosis check to the otolith edge
(Ri_m) which was 1.3 + 0.28 um/days in A. japonica and
21 £ 0.60 pm/days in A. marmorata. These results
indicated that otolith growth was slower during the lep-
tocephalus stage and faster after metamorphosis in both
species. From the primordium to the otolith edge, differ-
ent otolith growth rates were observed to correspond to
different ontogenetic development stages (Figure 2). The
first pattern was observed in the region between the
primordium and the FFC and was deposited during the
yolk-sac stage. In this region, no discernible DGIs were
observed, and the Sr/Ca ratio was lower because the
yolk sac was of freshwater maternal origin (Figure 2).
The second pattern was observed in the region between
the FFC and MC and was deposited during the lepto-
cephalus stage. Otolith DGIs, on the other hand, became
wider beyond the MC. The third pattern was observed
in the region between the MC and otolith edge and
was deposited during the glass eel stage. These growth

and Sr/Ca ratio patterns in otoliths of A. marmorata glass
eels were similar to those observed in A. japonica. This
indicated that both species have similar life histories
from the spawning ground to the estuary in their
early life stage.

Age at metamorphosis in relation to the growth rate and
distance from the spawning grounds and to differences

in ages between species

The overall mean (+ standard deviation) T, was signifi-
cantly older in A. japonica (140.7 + 13.6 days) than that
in A. marmorata (113.5 + 13.0 days) (p < 0.001, Table 1).
It was also found that the T,, increased from south to
north in both species (Figure 4). In addition, the 7', was
negatively correlated with the growth rate before meta-
morphosis (G,) (Figure 5). On the other hand, T, values
of A. marmorata and A. japonica were positively related
to the larval dispersal distance from the spawning
grounds (Figure 6).

Discussion

The difference in T, values between A. japonica and A.
marmorata and its biological significance

In the present study, it was found that at an age of 110
days (Table 1), A. marmorata had already metamor-
phosed and commenced migration to coastal waters of
the northern Philippines, while A. japonica remained at
the pelagic leptocephalus stage and continued to drift
with currents in the open ocean until it reached
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Table 3 Mean increment widths of radii of R,,,, R, and R;_, in otoliths of Anguilla japonica and A. marmorata glass eels

Species Sampling site Sampling date Increment width in um (n)
R, R, Ri-m
A. japonica® Tungkang River, Taiwan 30 December 0.8 +0.07 (5 0.9 + 0.09 (5) 12 +031 (5
92
24 March 93 08 £0.07 (7) 0.8 £0.03 (5 14019 (5)
Shuangshi River, Taiwan 20 December 0.8 +0.07 (7) 0.9 + 0.03 (6) 1.5+ 048 (6)
92
17 February 93 09 £ 009 (3) 1.0+ 004 (2) 14+003 (2
Mingchiang River, China 1 March 93 0.7 +0.02 (5 0.9 + 0.06 (5) 14 + 038 (5)
Chyantarng River, China 17 February 93 0.7 £ 0.08 (7) 0.8 +0.03 (4) 13+0.17 (4)
Yalu River, China 3 May 93 0.8 £0.09 (8) 09 + 005 (8) 1.3 +£045 (8)
Ichinomiya River, Japan 10 January 94 0.7 +0.06 (5) 0.8 +0.05 (5) 12 +0.26 (5)
Overall (uy) 0.78 + 0.07 (47) 0.88 + 0.05 (40) 34 £ 0.28 (40)
A. marmorata Cagayan River, the 19 May 08 1.0+ 018 (13) 1.1+£014(13) 1.84 + 046 (13)
Philippines
Hsiukuluan River, Taiwan 20 May 08 0.9 +0.10 (13) 12+0.18(13) 229+ 072 (13)
Kurio River, Japan 6 June 96 09 £ 0.14 (15) 1.1+£017 (15) 218 £ 061 (15)
Overall (us 093 +0.14 (41) 1.13 £ 0.16 (41) 2.10 + 060 (41)
Difference 0.15 025 0.76
(Ha-Hy
Significance A. marmorata > A. A. marmorata > A. A. marmorata > A.

Japonica

Japonica Japonica

?Cheng and Tzeng (1996). Mean increment widths (+SD) of radii of Ry, Ry, and R,_, in otoliths of A. japonica and A. marmorata glass eels. n, number of individuals

used for increment width measurements.

northern Taiwan where it began to metamorphose ap-
proximately 24 days later. This must be the reason why
the geographic distribution of A. japonica is more north-
erly than that of A. marmorata. The metamorphosis of
leptocephalus to glass eels transforms the laterally com-
pressed, willow leaf-like shape of the former to a more
rounded, streamlined shape of the latter. This transform-
ation reportedly causes drastic reductions in the length
and weight of the leptocephalus and an estimated 80%
drop in whole body water (Bertin 1951; Otake 2003).
Previous studies found that the body shape of the lepto-
cephalus is suitable for drifting with oceanic currents
(Miller 2009; Tsukamoto et al. 2009; Tsukamoto et al.
2011). Also, the laterally compressed willow leaf-like
body shape of the anguillid leptocephalus and the high
body water content greatly contribute to its buoyancy
and is favorable for passive planktonic drift and trans-
port by ocean currents, while the body of the glass eel is
more adapted for bottom dwelling. Once the leptocepha-
lus metamorphose into a glass eel, it loses buoyancy and
leaves the strong ocean currents. In other words, meta-
morphosis from a leptocephalus to a glass eel in
anguillid species terminates the passive drift of eel larvae
and initiates migration to coastal waters, and it also de-
termines the ultimate destination of larval dispersal. The
completion of eel larval metamorphosis and the onset of
the juvenile stage initiate a behavioral shift from pelagic

migration to bottom settlement (Moran 1994). Earlier
metamorphosing leptocephali are recruited earlier, while
delayed metamorphosis leptocephali are bound for lon-
ger oceanic dispersal and later estuarine recruitment.
Metamorphosis occurs during migration from their
offshore marine spawning grounds to their continen-
tal freshwater growth habitats, and it marks an adap-
tive shift from oceanic drifting to river colonization
and the beginning of the continental dispersal phase
(Edeline et al. 2009). DGIs in otoliths can conveniently
provide the timing for metamorphosis (7},), and the
radius from the P to the MC can provide information
on the ‘metamorphosing size’ of anguillid eels. These
allowed us to gain insights into the mechanism of
metamorphosis of anguillid eels in the wild and pro-
vided clues to understanding the biological signifi-
cance of differences in the T, size at metamorphosis,
and in growth rate of leptocephali between A. japonica
and A. marmorata. Tsukamoto (1990) suggested that A.
japonica begins to metamorphose when leptocephali
reach 60 mm TL. On the other hand, metamorphosis of
leptocephali of A. marmorata and other tropical eel spe-
cies like Anguilla bicolor pacifica, Anguilla borneensis,
and Anguilla celebesensis was found to commence at
around 50 mm TL (Kuroki et al. 2005, 2006), which is
considerably smaller than the metamorphosing size of the
temperate A. japonica.



Leander et al. Zoological Studies 2013, 52:30
http://www.zoologicalstudies.com/content/52/1/30

Page 10 of 15

A. japonica
(al) g,

(b1) 2

(cl) .

Length at recruitment
(mm)

_—~
=
Jury

~
n
5

lime between metamorphosis
and age at recruitment (days)
L
¥y

Abbreviations of sampling locations are given in Figure 1.

REGH

& 4o
S »® S

o

o

Sampling location (south-north)

Figure 4 Spatial changes of Anguilla japonica and A. marmorata. Spatial changes in age at metamorphosis (a; to a,), age (b, to by), and
length (cq to ¢3) at recruitment, and time between metamorphosis and age at recruitment (d; to dy) of Anguilla japonica and A. marmorata.

A. marmorara
(a2) 5

110

(b1) 20 -

(C2) 62 A

d2) s

Differences in the timing and duration of metamorphosis
between A. japonica and A. marmorata

Previous studies indicated that the timing and duration
of metamorphosis from leptocephali to glass eels differed
between temperate and tropical anguillid eels around
the world, with a tendency for tropical species like A.
marmorata to begin metamorphosis at a much younger
age and complete it in a shorter time than temperate
species (Chang and Tzeng 1996; Wang and Tzeng 1998,
2000; Arai et al. 1999a; Shiao et al. 2001). In this study,
we found that the temperate eel A. japonica exhibited
older metamorphosis timing and experienced a longer
leptocephalus stage than the tropical A. marmorata.
Arai et al. (2001b) noted that this tendency was brought

about by differences in the temperature experienced by
leptocephali of temperate and tropical eels during their
migration to coastal waters from their spawning areas.
However, this might not be true for A. japonica and
A. marmorata since they begin migration from the same
general spawning area (Kuroki et al. 2009) and drift with
the same current system (NEC and KC). In addition,
A. rostrata and A. anguilla also experience similar
temperature and current systems during their inshore
migration from their spawning grounds, but their ages at
metamorphosis differ from each other (Wang and Tzeng
1998). These facts suggest that genetic modifications
and evolutionary strategies (e.g., low growth rate/metab-
olism during the larval stage and a long larval duration)
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of eel species are more important than the influence of
temperature on differences in the timing and duration of
metamorphosis between A. japonica and A. marmorata.

Delayed metamorphosis as a means of long-distance
dispersal of the eel

At the end of their long transoceanic migration, A.
japonica and A. marmorata leptocephali metamorphose
into glass eels and invade coastal and inland habitats.
Otolith microchemical studies revealed that after reac-
hing coastal waters, glass eels may either migrate further
inland and colonize freshwater habitats or stop their up-
stream migration and settle in seawater or estuaries
(Tzeng et al. 2002; Arai et al. 2004; Daverat et al. 2006).
The timing of metamorphosis by a leptocephalus into a
glass eel and transport by oceanic currents are consid-
ered key determinants of the ultimate destination of eels
(Cheng and Tzeng 1996; Tzeng 2003). In the present
study, we found that the age of A. marmorata at meta-
morphosis from leptocephalus to glass eel (113.5 + 13.0
days) was younger than in A. japonica (140.7 + 13.6
days). Because metamorphosis triggers a behavioral
switch from pelagic migration to bottom settlement, A.
japonica leptocephali which arrive in Philippine waters
are apparently too young to metamorphose and migrate
towards estuaries so they continue drifting northwards
or southwards. This must be the reason why Japanese
eels are seldom found in the Philippines, while A.
marmorata occurs in abundance (Tabeta et al. 1975,
1976). A similar scenario was also observed in American
and European eels, for which differences in the duration
of the leptocephalus stage and growth rates were the
principal factors triggering segregative migration of these
two species in the Atlantic Ocean (Wang and Tzeng
2000). The delay in metamorphosis of about 12 to 15
months in A. anguilla (McCleave 1993; Wang and Tzeng
2000) is necessary for its long-distance dispersal that in-
cludes a trans-Atlantic crossing. Similarly, it seems that
A. japonica has developed a strategy to delay its meta-
morphosis from leptocephali to glass eels by reducing its
growth rate, which enables it to migrate segregatively
with A. marmorata and experience long-distance disper-
sal in East Asia. Its faster growing and earlier meta-
morphosing leptocephali are recruited in Taiwan, while
those that do not continue to drift towards eastern
China and Japan. On the other hand, the faster growing
and earlier metamorphosing leptocephali of A. marmo-
rata are recruited earlier in the Philippines, while its
slower growing, delayed metamorphosing leptocephali
disperse southward (via the Mindanao Current) and
northward (via the KC). The difference in age at meta-
morphosis between A. japonica and A. marmorata
ranged 18.5 to 39.9 days, and the delay in metamor-
phosis of 185 to 39.9 days is enough to allow A.
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japonica to be transported from North Luzon, the
Philippines to further north in continental East Asia by
the KC. Aside from these considerations, anomalies in
the hydrology of the region should also be taken into ac-
count because they might also influence the duration of
larval drift and subsequently delay metamorphosis and
affect recruitment. Anomalies such as El Nifo and El
Nifio Southern Oscillation were found to affect current
systems in the region. During El Nifo years, the salinity
front in the NEC region retreats southward, leading to a
southward shift in the spawning grounds, causing poor
recruitment (Kimura et al. 2001; Sugimoto et al. 2001;
Kim et al. 2007; Han et al. 2009b). During this period,
leptocephali experience longer drift, slower growth rates,
delayed metamorphosis, and ultimately delayed recruit-
ment. But during non-El Nifio years, the hydrology of
the region changes with the season, and these changes
are more or less regular. Specimens examined in the
present study were collected from different years during
their peak recruitment seasons during non-El Nifio
years. Accordingly, the effects of environmental factors,
such as El Nifio events, on larval transportation and sub-
sequently delayed metamorphosis from leptocephali to
glass eels were not examined in this study and would be
a good topic for future research and long-term studies.

Early growth of Anguilla leptocephali

The migratory segregation between A. japonica and
A. marmorata in the northwestern Pacific can be further
understood by examining their larval growth rates. Pat-
terns of ontogenetic changes in otolith DGIs from the
P to the otolith edge were found to be similar between
A. japonica (Cheng and Tzeng 1996; Tzeng 2003) and
A. marmorata (Table 1, Figure 2); however, otolith DGI
widths were greater and increment numbers were fewer
in A. marmorata than A. japonica (Tables 1 and 3). This
indicates that during the early stage of development,
A. marmorata has faster otolith growth rates than A.
japonica. Faster growing leptocephali are able to meta-
morphose and are recruited earlier to estuaries in the
Philippines, while slower growing ones metamorphose
and are recruited later to estuaries in Taiwan, eastern
China, Korea, and Japan. In addition to this, a close lin-
ear relationship between ages at metamorphosis and re-
cruitment in temperate and tropical eel species was
observed (Marui et al. 2001), further suggesting that
early-metamorphosing glass eels are recruited at younger
ages. A similar phenomenon was also observed in other
anguillid species like A. celebesensis, Anguilla bicolor
bicolor, A. bicolor pacifica, A. australis, A. anguilla,
A. rostrata, and Anguilla dieffenbachi. A reduced growth
rate in A. japonica larvae prevents metamorphosis in
synchrony with A. marmorata despite their overlapping
spawning sites and the same oceanic transport and
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migratory routes. Also, the slower growth rate of A.
japonica during the leptocephalus stage and its longer
duration compared to A. marmorata seem to be due to
the longer transportation distance.

Conclusions

In conclusion, the larval growth rate and metamorphosis
timing (7,,) may play important roles in the geograph-
ical distribution of the sympatric anguillid eel species
A. japonica and A. marmorata in the northwestern
Pacific during their drift from their overlapping
spawning grounds in waters west of the Mariana Islands
via the NEC and KC to their continental freshwater
growth habitats. A. marmorata grows faster and meta-
morphoses earlier than A. japonica; thus, it can be abun-
dantly found in the tropical Philippines and subtropical
Taiwan, but few are seen in temperate China, Korea, and
Japan. On the contrary, the temperate eel A. japonica is
abundant beyond Taiwan, and few or none are found in
the tropical Philippines. This indicates that differences in
growth rates and the timing of metamorphosis from lepto-
cephali to glass eels are key factors determining the con-
tinental distribution of these two sympatric anguillid eel
species. Delayed metamorphosis with a reduced growth
rate in A. japonica leptocephali may be an evolutionary
strategy for temperate species to extend their distribution
area from a tropical to a temperate region, farther north
than the distribution range of A. marmorata.
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